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EXAMPLE USER INTERACTIONS WiTH A WEARABLE DEVICE
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EXAMPLE PROCESS OF OBJECT RECOGNITION

800
N

USE CAMERAS AND VARIOUS INPUT ELEMENTS TO
COLLECT IMAGES, POINTS, AND DATA

X

DETERMINE SPARSE POINTS BASED ON INPUT ELEMENTS

ORJECTS USING A MAP DATABASE

X

TRANSMIT THE MAPPING INFORMATION AND RECOGNIZED
OBJECTS TO THE LOCAL WEARABLE SYSTEM

o0
(63}
-

A

830
A
CRAWL TRHOUGH POINTS TO RECOGNIZE ONE OR MORE /

DISPLAY A DESIRED VIRTUAL SCENE TO THE USERIN
RELATION TO RECOGNIZED OBJECTS




US 11,935,205 B2

Sheet 10 of 33

Mar. 19, 2024

U.S. Patent

BODG

056
MHOMLIN

UgiL

N MEZINGODT LOArE0
A
@
[
&
e PRoL
AOVAILNI 0 WIZINDOOT 10380
WHOMLIN
607
o A 0 YIZINDCOTY LOINE0
0% it —
AHOLISOARY ﬂum_mowa e J - Jm% o
(H,Q\Q Hw._.QEHwE &FQ &nwvfnm Q_M\E Q«MKQ“@, R ) N R 1 %]
5507
Y HEZINGIOOTH 10T
076 WALSAS ONLLACNOD 3LONTY ¢ H3ZINO00HY 104
o i v/am
SNIISAS TV I T T SNONY SNOITVONANGS T1aRvyS



U.S. Patent Mar. 19, 2024 Sheet 11 of 33 US 11,935,205 B2

EXAMPLE TELEPRESENCE SESSION

Bob




US 11,935,205 B2

Sheet 12 of 33

Mar. 19, 2024

U.S. Patent

HYLYAY SHOY

dYLYAY 3 1dAVX

V/xofow



U.S. Patent Mar. 19, 2024 Sheet 13 of 33 US 11,935,205 B2

/1422‘

14(}03\‘ o1

,)« 1424

— 1101

14000 i R
| Py

\ - 1466
Sl bt
Y ot o o wome K o mmmf o o ewmm o o emeew o o ammm o0

1400 MOVE THAT
d\ o~ o

- < - e
/ \,_‘",_ ........ —-. -
{ \ -

- 1466




U.S. Patent Mar. 19, 2024 Sheet 14 of 33 US 11,935,205 B2

OVERVIEW OF AVATAR RENDERING BASED ON AN OBJECT OF INTEREST

/ 1240
POSE DATA OF A

USER

1250 / 1260

BODY POSE OF EYE GAZE OF THE
THE USER USER

/ 1270
ORJECT OF

INTEREST IN THE
USER'S
ENVIRONMENT

INTERACTION
EVENT OF A
VIRTUAL AVATAR
OF THE USER




U.S. Patent

Mar. 19, 2024 Sheet 15 of 33

RENTIEY AN OBJECT OF INTEREST IN A USER'S ENVIRONMENT

USER A'S ENVIRONMENT

1300 /- 1330

-*

2 S
4 %
320 ! -
1320 ioe )
] ]

‘; o2

L SR -

A
| J
1310

USER B'S ENVIRONMENT

/ 1370 / 1330

,:' “e‘
{0
O S
Y ;
s, S

.....

1360

US 11,935,205 B2

1395



U.S. Patent Mar. 19, 2024 Sheet 16 of 33 US 11,935,205 B2

.
'''''

,..
o
J//’,/’ 1340
-...-‘
o,
o’
‘--a-“‘

1308

- -
.......

3£ AND EYE GAZE
d

/7,
1310

7

1304
\

1330 \
1302
\':\/
AN

DENTIFY AN OBJECT OF INTEREST BASED ON HEAD PO
\
\
N




US 11,935,205 B2

Sheet 17 of 33

Mar. 19, 2024

U.S. Patent

lllll

gLl

S
Lv ~  S70=mdan
|

) =M

N
4 vy
mQi/\“ /// 2061
7
Y \
\\
\
\
%ﬁ\/\&\
o 0=
A

M ONLSTUILNI LSO
080 = pu(ganl

/ geel

LHOEM NG d35vd NOILY INOIVO 30TIWA

1S3yl

NI




US 11,935,205 B2

Sheet 18 of 33

Mar. 19, 2024

i)
{ )
~
N
> N >
p. /2 \ AN -
BEL ~_ / N\ ~  Sr0=mdan
. N
/ / // ZosL
) 8 W.M 0/
Vg\‘s ..:uoam b /
I \ voek = Ny 0zl
PoSiEM \ \
.—o ﬂ.o &l\
ONILSINILNI 1SOW
560 = MdgA)
S0 \ 0l =M .
e , 060 = Malg-A)
AV 4
N sl

U.S. Patent

QINGD - LHOIEM NO G35vH NOILY N0 WD 3NIYA L5dd-1N




US 11,935,205 B2

Sheet 19 of 33

Mar. 19, 2024

U.S. Patent

A {£'gz- 5
,zommmoézoméa

a

/\i\l .
/
\

070 <
NOLLISOd V 350 T¥00T

%3\ 8511

(0°7%) : NOILLISOd 3 NODYH(
TOL5IA WROITS0d NG (9578 AR (oo
MOV o an oA 1aamgr  NOUISOd 8 Y380 210WEd S



US 11,935,205 B2

Sheet 20 of 33

Mar. 19, 2024

U.S. Patent

e ™
(8050 '809°0- '39°0°)
{E7YINON] OV SO LO3A

\ \\

(A4

57l

\ // / N
/ (L1670 ‘5660~ pLLG)
,/ {921 YNMON) OV mosmeill, K
//\/A /i\\\\
A/ , v
e 1522
\\\ /
Lo0
4 HOLDHA GHYAMNOA 4
\\ ﬁ m N
| {2eg0 0 '555°0)
{QHZ0VIRION) 8Y HOLI3A
N J .
2 0o
%23
HOLO3A WNOILISOd NC 035v S
NOIN T W0 3 T9A 15393 LM
S o




US 11,935,205 B2

Sheet 21 of 33

Mar. 19, 2024

U.S. Patent

7 2880 = Y47
Zeo 0, LU+ 0,0+ {5550, 0) = gy-dv

7 {(ZZN ZIAY+ (RZA « ALA + DA XLA)
10NG0Yd 100

| oo |
4V HOLD3A QUYMEOS ~_
\ 4
7 N
(2eq0°0 '555°0) Ol
AO3zrYINEON) g mgom&
/,/. - m
oo —
HOLOZA TYNOILISOA NG 048V ;o
NOLWINO YD ANIWA LSdd4 1N v SN oL




US 11,935,205 B2

Sheet 22 of 33

Mar. 19, 2024

U.S. Patent

\\ .

ﬁ LLE0 = -4V
:.&?m.*.mmmm.m-é*.@:?guo@é

y

( (Zet « ZiN + (AZA « ALAT+ (XA L XUN
\ 10000Yd 10T
/,/ «\
{ TN
m\
HCLOHA WNGIHLISOd NO (45VY

NOLVING WO dNTWA L5dd 1IN

/

i

N

/

{

-

{11670 °S68°0- Y110
CEZITYIMEOND OV HOL03A
S/

4

{1 00) ﬁ ,
HOLO3FA QYYMMOS

J

,,/,/83

H
/

=




US 11,935,205 B2

Sheet 23 of 33

Mar. 19, 2024

U.S. Patent

C

\\‘ 4//,

\\ /
80%'0 = gAY o

_,/ (8000 1)+ 16090, )+ 890« 0) = Oy g 811
" Y,

/ N 04%1 ; ™~
\ Z2h « ZLA)+ (AZA « ALAT+ OQ@A OO | {80%'0 '609°0- '89°0-) ‘
_/ 11010044 100 ) | (QFZVINGON] OV WOLOFA |
/// \\\ / .\\

I

/ A\

m o0 f
- 4Y MOLO3A QUVIMMOA 4

j

Girl

HOLOAA WNOLLISOA NG d-45VY
NOLIVINO WD Y IWA L8ddd NI




US 11,935,205 B2

Sheet 24 of 33

Mar. 19, 2024

U.S. Patent

\
A

H0L02A WNOILISOd NG 045vd

NOLEINO YO 2N WA LSHHE 1IN

el 0 = Dvdy

ONILSTHALIN LS0W
LE60 = Ov-dY

7c




US 11,935,205 B2

Sheet 25 of 33

Mar. 19, 2024

U.S. Patent

11573

j2Eps| B UC 1IN0 §35AL pUy
JBAS | 4 1N0 U di3Y PUE J0ARY
YT WIS i noh adoy

inCA J0L $5EY JaYI0 wiouad

o1 pue ‘suciiseEdns nod oald
‘huediuns noA daay 01 noA
123U 90 SABMIE I | B0y




US 11,935,205 B2

Sheet 26 of 33

Mar. 19, 2024

U.S. Patent

YIvaIno
ANOHIANS
TeniHiA

P
ot
e
——

WALSAS H1YHYam

s
HAOMLEN

8e8)
DNDIOVHL
4504/ JHNisHD

Ok

g
ONHOYEL K3LOL

ONBAOYHL HA3

Cegt
ONDADYHL HOZHdS

0e97
NHLSAS ONIddYW LINZLINE

Orol
Yiv¥Q Loarde

HFET
WILSAS
INVISISSY WNLdIA

GO

NELSAS ONBIBONTY GNY ONISSIO0N MV LIYAY




US 11,935,205 B2

Sheet 27 of 33

Mar. 19, 2024

U.S. Patent

510480
12180ddNS
SAY TSI ?q&oc IOH

L103rg0 INOTID
103090 3733494
HOOTE DISNA
FeVEHO G334
Told0d

qu HAMOd

wﬁIO_ NV

HISMHHL
@zﬁa,q NS MO0

ANHOSN

TEH 183N03Y

SN AL LY GDIOOT

S50 A €YHD

SNOLLDYEEIN

SONILTTUD
HALOVHVHO

SNOLLOVHHLNI

e — Ol
PSR T HALOVHYHD
SNOLLOVHRLINI
NOLLYNINGS
ONIINNP ONIANYT DNV NOLLOY LIH
Ve 08¢
FOVIVQ
HACNYM eI

NOILOWOOOT

=
SNOILLSZD0NS

vl
NCLLOWOD0T

Segt
ST INVLSISSY TVNLYIA

NOLLYINZMO

('}
1\.

P wmg

LH

ol

ol
SWYHRCTOH




U.S. Patent Mar. 19, 2024 Sheet 28 of 33 US 11,935,205 B2

1784h

E?ii\
1784a



US 11,935,205 B2

Sheet 29 of 33

Mar. 19, 2024

U.S. Patent




US 11,935,205 B2

Sheet 30 of 33

Mar. 19, 2024

U.S. Patent




US 11,935,205 B2

Sheet 31 of 33

Mar. 19, 2024

U.S. Patent

g6l "Oid




US 11,935,205 B2

Sheet 32 of 33

Mar. 19, 2024

U.S. Patent

Yoz 'Ol

B

TR

\
\
\
\

{

i

!

1
{
{
{




US 11,935,205 B2

Sheet 33 of 33

Mar. 19, 2024

U.S. Patent

g0¢ "Oid




US 11,935,205 B2

1
MISSION DRIVEN VIRTUAL CHARACTER
FOR USER INTERACTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 17/501,867, filed on Oct. 14, 2021, entitled “MISSION
DRIVEN VIRTUAL CHARACTER FOR USER INTERA-
TION”, which is a continuation of U.S. application Ser. No.
17/060,896, filed on Oct. 1, 2020, entitled “MISSION
DRIVEN VIRTUAL CHARACTER FOR USER INTERA-
TION”, which claims the benefit of priority under 35 U.S.C.
§ 119(e) to U.S. Provisional Application No. 62/909,565,
filed on Oct. 2, 2019, and U.S. Provisional Application No.
62/913,061, filed on Oct. 9, 2019. Each of the above-recited
applications is incorporated herein by reference in its
entirety.

FIELD

The present disclosure relates to virtual reality and aug-
mented reality, including mixed reality, imaging and visu-
alization systems and more particularly to systems and
methods for displaying and interacting with virtual content.

BACKGROUND

Modern computing and display technologies have facili-
tated the development of systems for so called “virtual
reality,” “augmented reality,” and “mixed reality” experi-
ences, wherein digitally reproduced images are presented to
a user in a manner such that they seem to be, or may be
perceived as, real. A virtual reality (VR) scenario typically
involves presentation of computer-generated virtual image
information without transparency to other actual real-world
visual input. An augmented reality (AR) scenario typically
involves presentation of virtual image information as an
augmentation to visualization of the actual world around the
user. Mixed reality (MR) is a type of augmented reality in
which physical and virtual objects may co-exist and interact
in real time. Systems and methods disclosed herein address
various challenges related to VR, AR and MR technology.

SUMMARY

Details of one or more implementations of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages will become apparent from
the description, the drawings, and the claims. Neither this
summary nor the following detailed description purports to
define or limit the scope of the inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an illustration of a mixed reality scenario
with certain virtual reality objects, and certain physical
objects viewed by a person.

FIG. 2 schematically illustrates an example of a wearable
system.

FIG. 3 schematically illustrates example components of a
wearable system.

FIG. 4 schematically illustrates an example of a wave-
guide stack of a wearable device for outputting image
information to a user.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 is a flowchart illustrating an example process of
interacting with a virtual user interface.

FIG. 6A is a block diagram of another example of a
wearable system which can comprise an avatar processing
and rendering system.

FIG. 6B is a block diagram illustrating example compo-
nents of an avatar processing and rendering system.

FIG. 7 is a block diagram of an example of a wearable
system including various inputs into the wearable system.

FIG. 8 is a flowchart illustrating an example process of
rendering virtual content in relation to recognized objects.

FIG. 9A schematically illustrates components of a system
that coordinates interactions between multiple wearable
systems.

FIG. 9B illustrates an example telepresence session.

FIG. 10 illustrates an example of an avatar as perceived
by a user of a wearable system.

FIG. 11 illustrates examples of selecting a virtual object
using a combination of user input modes.

FIG. 12 shows a block diagram of an overview of
intent-based virtual avatar rendering based on an object of
interest.

FIG. 13 A illustrates how virtual objects and avatars may
be placed in the virtual environments.

FIG. 13B illustrates an example of how an item of interest
can be identified once virtual objects or virtual avatars are
placed throughout a virtual environment.

FIGS. 13C and 13D illustrate examples of determining an
item of interest among a plurality of potential items of
interest.

FIG. 14A presents the initial scene of the example.

FIG. 14B replicates the scene presented in FIG. 14A,
illustrating that each object from FIG. 14A can be associated
with a vector extending out from the user to each object.

FIGS. 14C through 14E illustrate an example of calcu-
lating the interest value of the three objects in the virtual
scene.

FIG. 14F shows an example of determining the item of
interest by comparing the calculated interest values.

FIG. 15 illustrates a sample virtual scene that may be
displayed on a wearable device when the user enables a
virtual assistant.

FIG. 16 is a block diagram of an avatar processing and
rendering system in communication with a wearable system
that has activated a virtual assistant functionality.

FIG. 17A illustrates examples of rules that may be imple-
mented in a virtual assistant implementation.

FIG. 17B illustrates one example of a navigational mesh
including traversable areas in an environment.

FIG. 18 illustrates an example view of a mixed reality
environment that includes a virtual assistant, specifically,
Robot.

FIGS. 19A and 19B illustrate several frames that illustrate
examples of a mixed reality environment wherein a virtual
assistant provides a suggestion to the user.

FIGS. 20A and 20B illustrate several frames of an
example mixed reality environment where a virtual assistant
request help from a user to be moved down from a ledge.

Throughout the drawings, reference numbers may be
re-used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
implementations described herein and are not intended to
limit the scope of the disclosure.

DETAILED DESCRIPTION
Overview

A virtual avatar may be a virtual representation of a real
or fictional person or creature or personified object in an
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AR/VR/MR environment. For example, a virtual avatar may
represent a real person or may represent a non-user charac-
ter, such as a virtual assistant that is configured to interface
with users. For example, an AR display device can display
a non-user character as a virtual robot avatar. The virtual
robot may be a “virtual assistant” configured to assist the
user with contextual objects and suggestions depending on
what virtual content the user is interacting with. Animated
images may be displayed above the robot’s head to display
its intents to the user. For example, the robot can run up to
a menu and suggest an action and show the animated
images. The robot can materialize virtual objects that appear
on its hands. The user can remove such an object from the
robot’s hands and place it in the environment. If the user
does not interact with the object, the robot may demateri-
alize it. The robot may be configured to rotate its head to
keep looking at the user. Thus, a virtual assistant, such as a
robot, may be configured to with certain human character-
istics, even though it is a non-user character.

During a telepresence session in which two AR/VR/MR
users are interacting with each other, a viewer can perceive
an avatar of another user in the viewer’s environment and
thereby create a tangible sense of the other user’s presence
in the viewer’s environment. The avatar can also provide a
way for users to interact with each other and do things
together in a shared virtual environment. For example, a
student attending an online class can perceive and interact
with avatars of other students or the teacher in a virtual
classroom. As another example, a user playing a game in an
AR/VR/MR environment may view and interact with ava-
tars of other players in the game.

In some implementations, multiple users may wish to
view a common virtual object. For example, a virtual object
that is used for educational purposes, such as a piece of art
in a museum, automobile, biological specimen, chemical
compound, etc. may be selected by a presenter (e.g., a
teacher of a class of students) for analysis, viewing, and/or
interaction by multiple participants (e.g., students). As dis-
cussed further below, implementations that provide different
viewing modes for such groups allow a user, such as a
presenter, to customize the viewing experience of multiple
participants. Such shared content experiences may make use
of spatial computing by leveraging cinema techniques so
that the virtual object can feel realistic and perceptually
present in the room. This presentation tool may include
animation, visual effects, and sound effects of scenes that are
associated with portions of a virtual object (e.g., markings
that are carved into the body of a statue) in spatial comput-
ing. Advantageously, use of different viewing modes allows
individual users to see different virtual content despite being
in a shared viewing space or alternatively, to see the same
virtual content in different locations within a shared space.

Implementations of the disclosed systems and methods
may provide for improved avatars and a more realistic
interaction between a user of the wearable system and
avatars in the user’s environment. Although the examples in
this disclosure describe animating a human-shaped avatar,
similar techniques can also be applied to animals, fictitious
creatures, objects, etc.

Examples of 3D Display of a Wearable System

A wearable system (also referred to herein as an aug-
mented reality (AR) system), such as the example discussed
below with reference to FIG. 2, can be configured to present
2D or 3D images of virtual objects to a user. The images may
be still images, frames of a video, or a video, in combination
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or the like. At least a portion of the wearable system can be
implemented on a wearable device that can present a VR,
AR, or MR environment, alone or in combination, for user
interaction. The wearable device can be used interchange-
ably as an AR device (ARD). Further, for the purpose of the
present disclosure, the term “AR” is used interchangeably
with the term “MR”.

FIG. 1 depicts an illustration of a mixed reality scenario
with certain virtual reality objects, and certain physical
objects viewed by a person. In FIG. 1, an MR environment
100 is depicted wherein a user of an MR technology sees a
real-world park-like setting 110 featuring people, trees,
buildings in the background, and a concrete platform 120. In
addition to these items, the user of the MR technology also
perceives that he “sees” a robot statue 130 standing upon the
real-world platform 120, and a flying cartoon-like avatar
character 140 that seems to be a personification of a bumble
bee, even though these elements do not exist in the real
world.

VR, AR, and MR experiences can be provided by display
systems having displays in which images corresponding to
a plurality of depth planes are provided to a viewer. The
images may be different for each depth plane (e.g., provide
slightly different presentations of a scene or object) and may
be separately focused by the viewer’s eyes, thereby helping
to provide the user with depth cues based on the accommo-
dation of the eye required to bring into focus different image
features for the scene located on different depth planes or
based on observing different image features on different
depth planes being out of focus. As discussed elsewhere
herein, such depth cues provide credible perceptions of
depth.

FIG. 2 illustrates an example of wearable system 200
which can be configured to provide an AR/VR/MR scene.
The wearable system 200 can also be referred to as the AR
system 200 or the wearable system 200. The wearable
system 200 includes a display 220, and various mechanical
and electronic modules and systems to support the function-
ing of display 220. The display 220 may be coupled to a
frame 230, which is wearable by a user, wearer, or viewer
210. The display 220 can be positioned in front of the eyes
of the user 210. The display 220 can present AR/VR/MR
content to a user. The display 220 can comprise a head
mounted display (HMD) that is worn on the head of the user.

In some implementations, a speaker 240 is coupled to the
frame 230 and positioned adjacent the ear canal of the user
(in some implementations, another speaker, not shown, is
positioned adjacent the other ear canal of the user to provide
for stereo/shapeable sound control). The display 220 can
include an audio sensor (e.g., a microphone) for detecting an
audio stream from the environment and/or capture ambient
sound. In some implementations, one or more other audio
sensors, not shown, are positioned to provide stereo sound
reception. Stereo sound reception can be used to determine
the location of a sound source. The wearable system 200 can
perform voice or speech recognition on the audio stream.

The wearable system 200 can include an outward-facing
imaging system 464 (shown in FIG. 4) which observes the
world in the environment around the user. The wearable
system 200 can also include an inward-facing imaging
system 462 (shown in FIG. 4) which can track the eye
movements of the user. The inward-facing imaging system
may track either one eye’s movements or both eyes’ move-
ments. The inward-facing imaging system 462 may be
attached to the frame 230 and may be in electrical commu-
nication with the processing modules 260 and/or 270, which
may process image information acquired by the inward-
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facing imaging system to determine, e.g., the pupil diam-
eters or orientations of the eyes, eye movements or eye pose
of'the user 210. The inward-facing imaging system 462 may
include one or more cameras or other imaging devices. For
example, at least one camera may be used to image each eye.
The images acquired by the cameras may be used to deter-
mine pupil size or eye pose for each eye separately, thereby
allowing presentation of image information to each eye to be
dynamically tailored to that eye.

As an example, the wearable system 200 can use the
outward-facing imaging system 464 or the inward-facing
imaging system 462 to acquire images of a pose of the user.
The images may be still images, frames of a video, or a
video.

The display 220 can be operatively coupled 250, such as
by a wired lead or wireless connectivity, to a local data
processing module 260 which may be mounted in a variety
of configurations, such as fixedly attached to the frame 230,
fixedly attached to a helmet or hat worn by the user,
embedded in headphones, or otherwise removably attached
to the user 210 (e.g., in a backpack-style configuration, in a
belt-coupling style configuration).

The local processing and data module 260 may comprise
a hardware processor, as well as digital memory, such as
non-volatile memory (e.g., flash memory), both of which
may be utilized to assist in the processing, caching, and/or
storage of data. The data may include data a) captured from
sensors (which may be, e.g., operatively coupled to the
frame 230 or otherwise attached to the user 210), such as
image capture devices (e.g., cameras in the inward-facing
imaging system or the outward-facing imaging system),
audio sensors (e.g., microphones), inertial measurement
units (IMUs), accelerometers, compasses, global positioning
system (GPS) units, radio devices, or gyroscopes; or b)
acquired or processed using remote processing module 270
or remote data repository 280, possibly for passage to the
display 220 after such processing or retrieval. The local
processing and data module 260 may be operatively coupled
by communication links 262 or 264, such as via wired or
wireless communication links, to the remote processing
module 270 or remote data repository 280 such that these
remote modules are available as resources to the local
processing and data module 260. In addition, remote pro-
cessing module 270 and remote data repository 280 may be
operatively coupled to each other.

In some implementations, the remote processing module
270 may comprise one or more processors configured to
analyze and process data or image information. In some
implementations, the remote data repository 280 may com-
prise a digital data storage facility, which may be available
through the internet or other networking configuration in a
“cloud” resource configuration. In some implementations,
all data is stored and all computations (e.g., AR processes
discussed herein) are performed in the local processing and
data module, allowing fully autonomous use from a remote
module. In other implementations, some or all of the com-
putations of certain AR processes discussed herein are
performed remotely, such as at a network-connected server.

Example Components of a Wearable System

FIG. 3 schematically illustrates example components of a
wearable system. FIG. 3 shows the wearable system 200,
including the display 220 and the frame 230. A blown-up
view 202 schematically illustrates various components of
the wearable system 200. In certain implementations, one or
more of the components illustrated in FIG. 3 can be part of
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the display 220. The various components alone or in com-
bination can collect a variety of data (such as e.g., audio or
visual data) associated with the user of the wearable system
200 or the user’s environment. In other implementations, a
wearable system may include additional or fewer compo-
nents depending on the application for which the wearable
system is used. Nevertheless, FIG. 3 provides a basic idea of
some of the various components and types of data that may
be collected, analyzed, and stored through the wearable
system.

In the example of FIG. 3, the display 220 can comprise a
display lens 226 that may be mounted to a user’s head or a
housing or the frame 230. The display lens 226 may com-
prise one or more transparent mirrors positioned by the
frame 230 in front of the user’s eyes 302, 304 and may be
configured to bounce projected light 38 into the eyes 302,
304 and facilitate beam shaping, while also allowing for
transmission of at least some light from the local environ-
ment. The wavefront of the projected light beam 38 may be
bent or focused to coincide with a desired focal distance of
the projected light. As illustrated, two wide-field-of-view
machine vision cameras 16 (also referred to as world cam-
eras) can be coupled to the frame 230 to image the envi-
ronment around the user. These world cameras 16 can be
dual capture visible light/non-visible (e.g., infrared) light
cameras. The cameras 316 may be part of the outward-
facing imaging system 464 shown in FIG. 4. Images
acquired by the world cameras 16 can be processed by the
pose processor 36. For example, the pose processor 36 can
implement one or more object recognizers 708 (e.g., shown
in FIG. 7) to identify a pose of a user or another person in
the user’s environment or to identify a physical object in the
user’s environment.

The pose processor 36 may include one or more proces-
sors, such as an ASIC (application specific integrated cir-
cuit), FPGA (field programmable gate array), or ARM
processor (advanced reduced-instruction-set machine),
which may be configured to calculate real or near-real time
user head pose from wide field of view image information
output from the world cameras 16. The head pose processor
36 can be a hardware processor and can be implemented as
part of the local processing and data module 260 shown in
FIG. 2.

With continued reference to FIG. 3, a pair of scanned-
laser shaped-wavefront (e.g., for depth) light projection
subsystem 18 with display mirrors and optics configured to
project light 38 into the eyes 302, 304 are shown. The
depicted view also shows two miniature infrared cameras 24
paired with infrared light (such as light emitting diodes
“LED”s), which are configured to be able to track the eyes
302, 304 of the user to support rendering and user input. The
cameras 24 may be part of the inward-facing imaging
system 462 shown in FIG. 4.

The wearable system 200 can further feature a sensor
assembly 39, which may comprise X, Y, and Z axis accel-
erometer capability and/or a magnetic compass and X, Y,
and 7 axis gyro capability, preferably providing data at a
relatively high frequency, such as 200 Hz or more. The
sensor assembly 39 may be part of the IMU described with
reference to FIG. 2A.

The wearable system can also include one or more depth
sensors 234. The depth sensor 234 can be configured to
measure the distance between an object in an environment to
a wearable device. The depth sensor 234 may include a laser
scanner (e.g., a lidar), an ultrasonic depth sensor, and/or a
depth sensing camera. In certain implementations, where the
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cameras 316 have depth sensing ability, the cameras 16 may
also be considered as depth sensors 234.

In the example of FIG. 3, a sensor pose processor 32 is
configured to execute digital and/or analog processing to
derive pose from the gyro, compass, and/or accelerometer
data from the sensor assembly 39. The sensor pose processor
32 may be part of the local processing and data module 260
shown in FIG. 2.

The wearable system 200 as shown in FIG. 3 can also
include a position system such as, e.g., a GPS 37 (global
positioning system) to assist with pose and positioning
analyses. In addition, the GPS may further provide
remotely-based (e.g., cloud-based) information about the
user’s environment. This information may be used for
recognizing objects or information in the user’s environ-
ment.

The wearable system may combine data acquired by the
GPS 37 and a remote computing system (such as, e.g., the
remote processing module 270, another user’s ARD, etc.)
which can provide more information about the user’s envi-
ronment. As one example, the wearable system can deter-
mine the user’s location based on GPS data and retrieve a
world map (e.g., by communicating with a remote process-
ing module 270) including virtual objects associated with
the user’s location. As another example, the wearable system
200 can monitor the environment using the world cameras
16 (which may be part of the outward-facing imaging
system 464 shown in FIG. 4). Based on the images acquired
by the world cameras 16, the wearable system 200 can detect
objects in the environment (e.g., by using one or more object
recognizers 708 shown in FIG. 7). The wearable system can
further use data acquired by the GPS 37 to interpret the
detected objects, e.g., such as to determine that an object is
associated with a character.

The wearable system 200 may also comprise a rendering
engine 34 which can be configured to provide rendering
information that is local to the user to facilitate operation of
the scanners and imaging into the eyes of the user, for the
user’s view of the world. The rendering engine 334 may be
implemented by a hardware processor (such as, e.g., a
central processing unit or a graphics processing unit). In
some implementations, the rendering engine is part of the
local processing and data module 260. The rendering engine
34 can be communicatively coupled (e.g., via wired or
wireless links) to other components of the wearable system
200. For example, the rendering engine 34, can be coupled
to the eye cameras 24 via communication link 274, and/or be
coupled to a projecting subsystem 18 (which can project
light into user’s eyes 302, 304 via a scanned laser arrange-
ment in a manner similar to a retinal scanning display) via
the communication link 272. The rendering engine 34 can
also be in communication with other processing units such
as, e.g., the sensor pose processor 32 and the image pose
processor 36 via links 105 and 94 respectively.

The cameras 24 (e.g., mini infrared cameras) may be
utilized to track the eye pose to support rendering and user
input. Some example eye poses may include where the user
is looking or at what depth he or she is focusing (e.g., which
may be estimated with eye vergence). The GPS 37, gyros,
compass, and/or accelerometers may be utilized to provide
coarse or fast pose estimates. One or more of the cameras
316 can acquire images and pose, which in conjunction with
data from an associated cloud computing resource, may be
utilized to map the local environment and share user views
with others.

The example components depicted in FIG. 3 are for
illustration purposes only. Multiple sensors and other func-
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tional modules are shown together for ease of illustration
and description. Some implementations may include only
one or a subset of these sensors or modules. Further, the
locations of these components are not limited to the posi-
tions depicted in FIG. 3. Some components may be mounted
to or housed within other components, such as a belt-
mounted component, a hand-held component, or a helmet
component. As one example, the image pose processor 36,
sensor pose processor 32, and rendering engine 34 may be
positioned in a beltpack and configured to communicate
with other components of the wearable system via wireless
communication, such as ultra-wideband, Wi-Fi, Bluetooth,
etc., or via wired communication. The depicted frame 230
preferably is head-mountable and wearable by the user.
However, some components of the wearable system 200
may be worn on other portions of the user’s body. For
example, the speaker 240 may be inserted into, and/or
positioned near, the ears of a user to provide sound to the
user.

Regarding the projection of light 38 into the eyes 302, 304
of'the user, in some implementations, the cameras 24 may be
utilized to measure where the centers of a user’s eyes are
geometrically verged to, which, in general, coincides with a
position of focus, or “depth of focus™, of the eyes. A
3-dimensional surface of all points the eyes verge to can be
referred to as the “horopter”. The focal distance may take on
a finite number of depths, or may be infinitely varying. Light
projected from the vergence distance appears to be focused
to the subject eye 302, 304, while light in front of or behind
the vergence distance is blurred. Examples of wearable
devices and other display systems of the present disclosure
are also described in U.S. Patent Publication No. 2016/
0270656, which is incorporated by reference herein in its
entirety.

The human visual system is complicated and providing a
realistic perception of depth is challenging. Viewers of an
object may perceive the object as being three-dimensional
due to a combination of vergence and accommodation.
Vergence movements (e.g., rolling movements of the pupils
toward or away from each other to converge the lines of
sight of the eyes to fixate upon an object) of the two eyes
relative to each other are closely associated with focusing
(or “accommodation”) of the lenses of the eyes. Under
normal conditions, changing the focus of the lenses of the
eyes, or accommodating the eyes, to change focus from one
object to another object at a different distance will automati-
cally cause a matching change in vergence to the same
distance, under a relationship known as the “accommoda-
tion-vergence reflex.” Likewise, a change in vergence will
trigger a matching change in accommodation, under normal
conditions. Display systems that provide a better match
between accommodation and vergence may form more
realistic and comfortable simulations of three-dimensional
imagery.

In order for the 3D display to produce a true sensation of
depth, and more specifically, a simulated sensation of sur-
face depth, it may be desirable for each point in the display’s
visual field to generate an accommodative response corre-
sponding to its virtual depth. If the accommodative response
to a display point does not correspond to the virtual depth of
that point, as determined by the binocular depth cues of
convergence and stereopsis, the human eye may experience
an accommodation conflict, resulting in unstable imaging,
harmful eye strain, headaches, and, in the absence of accom-
modation information, almost a complete lack of surface
depth.
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Spatially coherent light with a beam diameter of less than
about 0.7 millimeters can typically be correctly resolved by
the human eye regardless of where the eye focuses. Thus, to
create an illusion of proper focal depth, the eye vergence
may be tracked with the cameras 24, and the rendering
engine 34 and projection subsystem 18 may be utilized to
render all objects on or close to the horopter in focus, and all
other objects at varying degrees of defocus (e.g., using
intentionally-created blurring). In one implementation, the
display 220 renders to the user at a frame rate of about 60
frames per second or greater. As described above, the
cameras 24 may be utilized for eye tracking, and software
may be configured to pick up not only vergence geometry
but also focus location cues to serve as user inputs. Such a
display system may be configured with brightness and
contrast suitable for day or night use.

In some implementations, the display system has latency
of less than about 20 milliseconds for visual object align-
ment, less than about 0.1 degree of angular alignment, and
about 1 arc minute of resolution, which, without being
limited by theory, is believed to be approximately the limit
of the human eye. The display 220 may be integrated with
a localization system, which may involve GPS elements,
optical tracking, compass, accelerometers, or other data
sources, to assist with position and pose determination;
localization information may be utilized to facilitate accu-
rate rendering in the user’s view of the pertinent world (e.g.,
such information would facilitate the wearable system to
know where it is with respect to the real world).

In some implementations, the wearable system 200 is
configured to display one or more images of virtual objects
(also referred to as “virtual images” herein) based on the
accommodation of the user’s eyes. Unlike prior 3D display
approaches that force the user to focus where the images are
being projected, in some implementations, the wearable
system is configured to automatically vary the focus of
projected virtual content to allow for a more comfortable
viewing of one or more images presented to the user. For
example, if the user’s eyes have a current focus of 1 meter,
the image may be projected to coincide with the user’s
focus. If the user shifts focus to 3 meters, the image is
projected to coincide with the new focus. Thus, rather than
forcing the user to a predetermined focus, the wearable
system 200 of some implementations allows the user’s eye
to a function in a more natural manner.

Such a wearable system 200 may eliminate or reduce the
incidences of eye strain, headaches, and/or other physiologi-
cal symptoms typically observed with respect to virtual
reality devices. To achieve this, various implementations of
the wearable system 200 are configured to project virtual
images at varying focal distances, through one or more
variable focus elements (VFEs). In one or more implemen-
tations, 3D perception may be achieved through a multi-
plane focus system that projects images at fixed focal planes
away from the user. Other implementations employ variable
plane focus, wherein the focal plane is moved back and forth
in the z-direction to coincide with the user’s present state of
focus.

In both the multi-plane focus systems and variable plane
focus systems, wearable system 200 may employ eye track-
ing to determine a vergence of the user’s eyes, determine the
user’s current focus, and project the virtual image at the
determined focus. In some implementations, wearable sys-
tem 200 comprises a light modulator that variably projects,
through a fiber scanner, or other light generating source,
light beams of varying focus in a raster pattern across the
retina. Thus, the ability of the display of the wearable system
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200 to project images at varying focal distances not only
eases accommodation for the user to view objects in 3D, but
may also be used to compensate for user ocular anomalies,
as further described in U.S. Patent Publication No. 2016/
0270656, which is incorporated by reference herein in its
entirety. In some implementations, a spatial light modulator
may project the images to the user through various optical
components. For example, as described further below, the
spatial light modulator may project the images onto one or
more waveguides, which then transmit the images to the
user.

Example Waveguide Stack Assembly

FIG. 4 illustrates an example of a waveguide stack for
outputting image information to a user. A wearable system
400 includes a stack of waveguides, or stacked waveguide
assembly 480 that may be utilized to provide three-dimen-
sional perception to the eye/brain using a plurality of wave-
guides 4325, 4345, 4365, 438b, 440b. In some implemen-
tations, the wearable system 400 may correspond to
wearable system 200 of FIG. 2, with FIG. 4 schematically
showing some parts of the wearable system 200 in greater
detail and not showing certain other components. For
example, in some implementations, the waveguide assembly
480 may be integrated into the display 220 of FIG. 2.

With continued reference to FIG. 4, the waveguide assem-
bly 480 may also include a plurality of features 458, 456,
454, 452 between the waveguides. In some implementa-
tions, the features 458, 456, 454, 452 may be lenses. In other
implementations, the features 458, 456, 454, 452 may not be
lenses. Rather, they may simply be spacers (e.g., cladding
layers or structures for forming air gaps).

The waveguides 4325, 4345, 4365, 438b, 4405 and/or the
plurality of lenses 458, 456, 454, 452 may be configured to
send image information to the eye with various levels of
wavefront curvature or light ray divergence. Positions of the
waveguides (e.g., from the eye 410) may be associated with
different depth planes and may be configured to output
image information corresponding to that depth plane. Image
injection devices 420, 422, 424, 426, 428 may be utilized to
inject image information into the waveguides 4405, 4385,
4365, 434b, 432b, each of which may be configured to
distribute incoming light across the respective waveguide,
for output toward the eye 410. In this example, light exits an
output surface of the image injection devices 420, 422, 424,
426, 428 and is injected into a corresponding input edge of
the waveguides 4405, 4385, 4365, 434b, 432b. In some
implementations, a single beam of light (e.g., a collimated
beam) may be injected into each waveguide to output an
entire field of cloned collimated beams that are directed
toward the eye 410 at particular angles (and amounts of
divergence) corresponding to the depth plane associated
with a particular waveguide.

In some implementations, the image injection devices
420, 422, 424, 426, 428 are discrete displays that each
produce image information for injection into a correspond-
ing waveguide 4405, 4385, 4365, 434b, 432b, respectively.
In some implementations, the image injection devices 420,
422, 424, 426, 428 are the output ends of a single multi-
plexed display which may, e.g., pipe image information via
one or more optical conduits (such as fiber optic cables) to
each of the image injection devices 420, 422, 424, 426, 428.

A controller 460 controls the operation of the stacked
waveguide assembly 480 and the image injection devices
420, 422, 424, 426, 428. The controller 460 includes pro-
gramming (e.g., instructions in a non-transitory computer-
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readable medium) that regulates the timing and provision of
image information to the waveguides 4405, 4385, 4365,
434b, 432b. In some implementations, the controller 460
may be a single integral device, or a distributed system
connected by wired or wireless communication channels.
The controller 460 may be part of the processing modules
260 or 270 (illustrated in FIG. 2) in some implementations.

The waveguides 4405, 4385, 4365, 4345, 4325 may be
configured to propagate light within each respective wave-
guide by total internal reflection (TIR). The waveguides
4405, 438b, 436b, 434b, 4325 may be planar or have another
shape (e.g., curved), with major top and bottom surfaces and
edges extending between those major top and bottom sur-
faces. In the illustrated configuration, the waveguides 4405,
438b, 436b, 434b, 432b may each include light extracting
optical elements 440a, 438a, 436a, 434a, 432a that are
configured to extract light out of a waveguide by redirecting
the light, propagating within each respective waveguide, out
of the waveguide to output image information to the eye
410. Extracted light may also be referred to as outcoupled
light, and light extracting optical elements may also be
referred to as outcoupling optical elements. An extracted
beam of light is outputted by the waveguide at locations at
which the light propagating in the waveguide strikes a light
redirecting element. The light extracting optical elements
(440a, 438a, 436a, 434a, 432a) may, for example, be
reflective or diffractive optical features. While illustrated
disposed at the bottom major surfaces of the waveguides
4405, 438b, 4365, 434b, 432b for ease of description and
drawing clarity, in some implementations, the light extract-
ing optical elements 440a, 438a, 4364, 434a, 432a may be
disposed at the top or bottom major surfaces, or may be
disposed directly in the volume of the waveguides 4405,
438b, 4365, 4345, 432b. In some implementations, the light
extracting optical elements 440a, 438a, 436a, 434a, 4324
may be formed in a layer of material that is attached to a
transparent substrate to form the waveguides 4405, 4385,
4365, 434b, 432b. In some implementations, the waveguides
4405, 4385, 4365, 4345, 43256 may be a monolithic piece of
material and the light extracting optical elements 440a,
438a, 4364, 434a, 432a may be formed on a surface or in the
interior of that piece of material.

With continued reference to the example of FIG. 4, as
discussed herein, each waveguide 4405, 4385, 4365, 4345,
432b is configured to output light to form an image corre-
sponding to a particular depth plane. For example, the
waveguide 432b nearest the eye may be configured to
deliver collimated light, as injected into such waveguide
432b, to the eye 410. The collimated light may be repre-
sentative of the optical infinity focal plane. The next wave-
guide 4345 may be configured to send out collimated light
which passes through the first lens 452 (e.g., a negative lens)
before it can reach the eye 410. First lens 452 may be
configured to create a slight convex wavefront curvature so
that the eye/brain interprets light coming from that next
waveguide 4345 as coming from a first focal plane closer
inward toward the eye 410 from optical infinity. Similarly,
the third up waveguide 4366 passes its output light through
both the first lens 452 and second lens 454 before reaching
the eye 410. The combined optical power of the first and
second lenses 452 and 454 may be configured to create
another incremental amount of wavefront curvature so that
the eye/brain interprets light coming from the third wave-
guide 4365 as coming from a second focal plane that is even
closer inward toward the person from optical infinity than
was light from the next waveguide up 43464.
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The other waveguide layers (e.g., waveguides 4385,
4405) and lenses (e.g., lenses 456, 458) are similarly con-
figured, with the highest waveguide 4405 in the stack
sending its output through all of the lenses between it and the
eye for an aggregate focal power representative of the
closest focal plane to the person. To compensate for the stack
of'lenses 458, 456, 454, 452 when viewing/interpreting light
coming from the world 470 on the other side of the stacked
waveguide assembly 480, a compensating lens layer 430
may be disposed at the top of the stack to compensate for the
aggregate power of the lens stack 458, 456, 454, 452 below.
Such a configuration provides as many perceived focal
planes as there are available waveguide/lens pairings. Both
the light extracting optical elements of the waveguides and
the focusing aspects of the lenses may be static (e.g., not
dynamic or electro-active). In some alternative implemen-
tations, either or both may be dynamic using electro-active
features.

With continued reference to FIG. 4, the light extracting
optical elements 440a, 438a, 436a, 434a, 432a may be
configured to both redirect light out of their respective
waveguides and to output this light with the appropriate
amount of divergence or collimation for a particular depth
plane associated with the waveguide. As a result, wave-
guides having different associated depth planes may have
different configurations of light extracting optical elements,
which output light with a different amount of divergence
depending on the associated depth plane. In some imple-
mentations, as discussed herein, the light extracting optical
elements 440qa, 438a, 436a, 434a, 432a may be volumetric
or surface features, which may be configured to output light
at specific angles. For example, the light extracting optical
elements 440a, 438a, 436a, 434a, 432a may be volume
holograms, surface holograms, and/or diffraction gratings.
Light extracting optical elements, such as diffraction grat-
ings, are described in U.S. Patent Publication No. 2015/
0178939, published Jun. 25, 2015, which is incorporated by
reference herein in its entirety.

In some implementations, the light extracting optical
elements 440a, 438a, 436a, 434a, 432a are diffractive
features that form a diffraction pattern, or “diffractive optical
element” (also referred to herein as a “DOE”). Preferably,
the DOE has a relatively low diffraction efficiency so that
only a portion of the light of the beam is deflected away
toward the eye 410 with each intersection of the DOE, while
the rest continues to move through a waveguide via total
internal reflection. The light carrying the image information
can thus be divided into a number of related exit beams that
exit the waveguide at a multiplicity of locations and the
result is a fairly uniform pattern of exit emission toward the
eye 304 for this particular collimated beam bouncing around
within a waveguide.

In some implementations, one or more DOEs may be
switchable between “on” state in which they actively dif-
fract, and “off” state in which they do not significantly
diffract. For instance, a switchable DOE may comprise a
layer of polymer dispersed liquid crystal, in which micro-
droplets comprise a diffraction pattern in a host medium, and
the refractive index of the microdroplets can be switched to
substantially match the refractive index of the host material
(in which case the pattern does not appreciably diffract
incident light) or the microdroplet can be switched to an
index that does not match that of the host medium (in which
case the pattern actively diffracts incident light).

In some implementations, the number and distribution of
depth planes or depth of field may be varied dynamically
based on the pupil sizes or orientations of the eyes of the
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viewer. Depth of field may change inversely with a viewer’s
pupil size. As a result, as the sizes of the pupils of the
viewer’s eyes decrease, the depth of field increases such that
one plane that is not discernible because the location of that
plane is beyond the depth of focus of the eye may become
discernible and appear more in focus with reduction of pupil
size and commensurate with the increase in depth of field.
Likewise, the number of spaced apart depth planes used to
present different images to the viewer may be decreased with
the decreased pupil size. For example, a viewer may not be
able to clearly perceive the details of both a first depth plane
and a second depth plane at one pupil size without adjusting
the accommodation of the eye away from one depth plane
and to the other depth plane. These two depth planes may,
however, be sufficiently in focus at the same time to the user
at another pupil size without changing accommodation.

In some implementations, the display system may vary
the number of waveguides receiving image information
based upon determinations of pupil size or orientation, or
upon receiving electrical signals indicative of particular
pupil size or orientation. For example, if the user’s eyes are
unable to distinguish between two depth planes associated
with two waveguides, then the controller 460 (which may be
an implementation of the local processing and data module
260) can be configured or programmed to cease providing
image information to one of these waveguides. Advanta-
geously, this may reduce the processing burden on the
system, thereby increasing the responsiveness of the system.
In implementations in which the DOEs for a waveguide are
switchable between the on and off states, the DOEs may be
switched to the off state when the waveguide does receive
image information.

In some implementations, it may be desirable to have an
exit beam meet the condition of having a diameter that is less
than the diameter of the eye of a viewer. However, meeting
this condition may be challenging in view of the variability
in size of the viewer’s pupils. In some implementations, this
condition is met over a wide range of pupil sizes by varying
the size of the exit beam in response to determinations of the
size of the viewer’s pupil. For example, as the pupil size
decreases, the size of the exit beam may also decrease. In
some implementations, the exit beam size may be varied
using a variable aperture.

The wearable system 400 can include an outward-facing
imaging system 464 (e.g., a digital camera) that images a
portion of the world 470. This portion of the world 470 may
be referred to as the field of view (FOV) of a world camera
and the imaging system 464 is sometimes referred to as an
FOV camera. The FOV of the world camera may or may not
be the same as the FOV of a viewer 210 which encompasses
a portion of the world 470 the viewer 210 perceives at a
given time. For example, in some situations, the FOV of the
world camera may be larger than the FOV of the viewer 210
of the wearable system 400. The entire region available for
viewing or imaging by a viewer may be referred to as the
field of regard (FOR). The FOR may include 47 steradians
of solid angle surrounding the wearable system 400 because
the wearer can move his body, head, or eyes to perceive
substantially any direction in space. In other contexts, the
wearer’s movements may be more constricted, and accord-
ingly the wearer’s FOR may subtend a smaller solid angle.
Images obtained from the outward-facing imaging system
464 can be used to track gestures made by the user (e.g.,
hand or finger gestures), detect objects in the world 470 in
front of the user, and so forth.

The wearable system 400 can include an audio sensor,
e.g., a microphone, to capture ambient sound. As described
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above, in some implementations, one or more other audio
sensors can be positioned to provide stereo sound reception
useful to the determination of location of a speech source.
The audio sensor can comprise a directional microphone, as
another example, which can also provide such useful direc-
tional information as to where the audio source is located.
The wearable system 400 can use information from both the
outward-facing imaging system 464 and the audio sensor in
locating a source of speech, or to determine an active
speaker at a particular moment in time, etc. For example, the
wearable system 400 can use the voice recognition alone or
in combination with a reflected image of the speaker (e.g.,
as seen in a mirror) to determine the identity of the speaker.
As another example, the wearable system 400 can determine
a position of the speaker in an environment based on sound
acquired from directional microphones. The wearable sys-
tem 400 can parse the sound coming from the speaker’s
position with speech recognition algorithms to determine the
content of the speech and use voice recognition techniques
to determine the identity (e.g., name or other demographic
information) of the speaker.

The wearable system 400 can also include an inward-
facing imaging system 462 (e.g., a digital camera), which
observes the movements of the user, such as the eye move-
ments and the facial movements. The inward-facing imaging
system 462 may be used to capture images of the eye 410 to
determine the size and/or orientation of the pupil of the eye
304. The inward-facing imaging system 462 can be used to
obtain images for use in determining the direction the user
is looking (e.g., eye pose) or for biometric identification of
the user (e.g., via iris identification). In some implementa-
tions, at least one camera may be utilized for each eye, to
separately determine the pupil size or eye pose of each eye
independently, thereby allowing the presentation of image
information to each eye to be dynamically tailored to that
eye. In some other implementations, the pupil diameter or
orientation of only a single eye 410 (e.g., using only a single
camera per pair of eyes) is determined and assumed to be
similar for both eyes of the user. The images obtained by the
inward-facing imaging system 462 may be analyzed to
determine the user’s eye pose or mood, which can be used
by the wearable system 400 to decide which audio or visual
content should be presented to the user. The wearable system
400 may also determine head pose (e.g., head position or
head orientation) using sensors such as IMUs, accelerom-
eters, gyroscopes, €tc.

The wearable system 400 can include a user input device
466 by which the user can input commands to the controller
460 to interact with the wearable system 400. For example,
the user input device 466 can include a trackpad, a touch-
screen, a joystick, a multiple degree-of-freedom (DOF)
controller, a capacitive sensing device, a game controller, a
keyboard, a mouse, a directional pad (D-pad), a wand, a
haptic device, a totem (e.g., functioning as a virtual user
input device), and so forth. A multi-DOF controller can
sense user input in some or all possible translations (e.g.,
left/right, forward/backward, or up/down) or rotations (e.g.,
yaw, pitch, or roll) of the controller. A multi-DOF controller
which supports the translation movements may be referred
to as a 3DOF while a multi-DOF controller which supports
the translations and rotations may be referred to as 6DOF. In
some cases, the user may use a finger (e.g., a thumb) to press
or swipe on a touch-sensitive input device to provide input
to the wearable system 400 (e.g., to provide user input to a
user interface provided by the wearable system 400). The
user input device 466 may be held by the user’s hand during
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the use of the wearable system 400. The user input device
466 can be in wired or wireless communication with the
wearable system 400.

Other Components of the Wearable System

In many implementations, the wearable system may
include other components in addition or in alternative to the
components of the wearable system described above. The
wearable system may, for example, include one or more
haptic devices or components. The haptic devices or com-
ponents may be operable to provide a tactile sensation to a
user. For example, the haptic devices or components may
provide a tactile sensation of pressure or texture when
touching virtual content (e.g., virtual objects, virtual tools,
other virtual constructs). The tactile sensation may replicate
a feel of a physical object which a virtual object represents,
or may replicate a feel of an imagined object or character
(e.g., a dragon) which the virtual content represents. In some
implementations, haptic devices or components may be
worn by the user (e.g., a user wearable glove). In some
implementations, haptic devices or components may be held
by the user.

The wearable system may, for example, include one or
more physical objects which are manipulable by the user to
allow input or interaction with the wearable system. These
physical objects may be referred to herein as totems. Some
totems may take the form of inanimate objects, such as for
example, a piece of metal or plastic, a wall, a surface of
table. In certain implementations, the totems may not actu-
ally have any physical input structures (e.g., keys, triggers,
joystick, trackball, rocker switch). Instead, the totem may
simply provide a physical surface, and the wearable system
may render a user interface so as to appear to a user to be on
one or more surfaces of the totem. For example, the wear-
able system may render an image of a computer keyboard
and trackpad to appear to reside on one or more surfaces of
a totem. For example, the wearable system may render a
virtual computer keyboard and virtual trackpad to appear on
a surface of a thin rectangular plate of aluminum which
serves as a totem. The rectangular plate does not itself have
any physical keys or trackpad or sensors. However, the
wearable system may detect user manipulation or interaction
or touches with the rectangular plate as selections or inputs
made via the virtual keyboard or virtual trackpad. The user
input device 466 (shown in FIG. 4) may be an implemen-
tation of a totem, which may include a trackpad, a touchpad,
a trigger, a joystick, a trackball, a rocker or virtual switch, a
mouse, a keyboard, a multi-degree-of-freedom controller, or
another physical input device. A user may use the totem,
alone or in combination with poses, to interact with the
wearable system or other users.

Examples of haptic devices and totems usable with the
wearable devices, HMD, and display systems of the present
disclosure are described in U.S. Patent Publication No.
2015/0016777, which is incorporated by reference herein in
its entirety.

Example Processes of User Interactions with a
Wearable System

FIG. 5 is a process flow diagram of an example of a
method 500 for interacting with a virtual user interface. The
method 500 may be performed by the wearable system
described herein. Implementations of the method 500 can be
used by the wearable system to detect persons or documents
in the FOV of the wearable system.

At block 510, the wearable system may identify a par-
ticular UL The type of Ul may be predetermined by the user.
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The wearable system may identify that a particular Ul needs
to be populated based on a user input (e.g., gesture, visual
data, audio data, sensory data, direct command, etc.). The Ul
can be specific to a security scenario where the wearer of the
system is observing users who present documents to the
wearer (e.g., at a travel checkpoint). At block 520, the
wearable system may generate data for the virtual UI. For
example, data associated with the confines, general struc-
ture, shape of the Ul etc., may be generated. In addition, the
wearable system may determine map coordinates of the
user’s physical location so that the wearable system can
display the Ul in relation to the user’s physical location. For
example, if the Ul is body centric, the wearable system may
determine the coordinates of the user’s physical stance, head
pose, or eye pose such that a ring Ul can be displayed around
the user or a planar Ul can be displayed on a wall or in front
of the user. In the security context described herein, the Ul
may be displayed as if the Ul were surrounding the traveler
who is presenting documents to the wearer of the system, so
that the wearer can readily view the UI while looking at the
traveler and the traveler’s documents. If the UI is hand
centric, the map coordinates of the user’s hands may be
determined. These map points may be derived through data
received through the FOV cameras, sensory input, or any
other type of collected data.

At block 530, the wearable system may send the data to
the display from the cloud or the data may be sent from a
local database to the display components. At block 540, the
Ul is displayed to the user based on the sent data. For
example, a light field display can project the virtual Ul into
one or both of the user’s eyes. Once the virtual Ul has been
created, the wearable system may simply wait for a com-
mand from the user to generate more virtual content on the
virtual Ul at block 550. For example, the Ul may be a body
centric ring around the user’s body or the body of a person
in the user’s environment (e.g., a traveler). The wearable
system may then wait for the command (a gesture, a head or
eye movement, voice command, input from a user input
device, etc.), and if it is recognized (block 560), virtual
content associated with the command may be displayed to
the user (block 570).

Examples of Avatar Rendering in Mixed Reality

A wearable system may employ various mapping related
techniques in order to achieve high depth of field in the
rendered light fields. In mapping out the virtual world, it is
advantageous to know all the features and points in the real
world to accurately portray virtual objects in relation to the
real world. To this end, FOV images captured from users of
the wearable system can be added to a world model by
including new pictures that convey information about vari-
ous points and features of the real world. For example, the
wearable system can collect a set of map points (such as 2D
points or 3D points) and find new map points to render a
more accurate version of the world model. The world model
of a first user can be communicated (e.g., over a network
such as a cloud network) to a second user so that the second
user can experience the world surrounding the first user.

FIG. 6A is a block diagram of another example of a
wearable system which can comprise an avatar processing
and rendering system 690 in a mixed reality environment.
The wearable system 600 may be part of the wearable
system 200 shown in FIG. 2. In this example, the wearable
system 600 can comprise a map 620, which may include at
least a portion of the data in the map database 710 (shown
in FIG. 7). The map may partly reside locally on the
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wearable system, and may partly reside at networked storage
locations accessible by wired or wireless network (e.g., in a
cloud system). A pose process 610 may be executed on the
wearable computing architecture (e.g., processing module
260 or controller 460) and utilize data from the map 620 to
determine position and orientation of the wearable comput-
ing hardware or user. Pose data may be computed from data
collected on the fly as the user is experiencing the system
and operating in the world. The data may comprise images,
data from sensors (such as inertial measurement units, which
generally comprise accelerometer and gyroscope compo-
nents) and surface information pertinent to objects in the real
or virtual environment.

A sparse point representation may be the output of a
simultaneous localization and mapping (e.g., SLAM or
vSLAM, referring to a configuration wherein the input is
images/visual only) process. The system can be configured
to not only find out where in the world the various compo-
nents are, but what the world is made of. Pose may be a
building block that achieves many goals, including popu-
lating the map and using the data from the map.

In one implementation, a sparse point position may not be
completely adequate on its own, and further information
may be needed to produce a multifocal AR, VR, or MR
experience. Dense representations, generally referring to
depth map information, may be utilized to fill this gap at
least in part. Such information may be computed from a
process referred to as Stereo 640, wherein depth information
is determined using a technique such as triangulation or
time-of-flight sensing. Image information and active pat-
terns (such as infrared patterns created using active projec-
tors), images acquired from image cameras, or hand ges-
tures/totem 650 may serve as input to the Stereo process
640. A significant amount of depth map information may be
fused together, and some of this may be summarized with a
surface representation. For example, mathematically defin-
able surfaces may be efficient (e.g., relative to a large point
cloud) and digestible inputs to other processing devices like
game engines. Thus, the output of the stereo process (e.g., a
depth map) 640 may be combined in the fusion process 630.
Pose 610 may be an input to this fusion process 630 as well,
and the output of fusion 630 becomes an input to populating
the map process 620. Sub-surfaces may connect with each
other, such as in topographical mapping, to form larger
surfaces, and the map becomes a large hybrid of points and
surfaces.

To resolve various aspects in a mixed reality process 660,
various inputs may be utilized. For example, in the imple-
mentation depicted in FIG. 6A, Game parameters may be
inputs to determine that the user of the system is playing a
monster battling game with one or more monsters at various
locations, monsters dying or running away under various
conditions (such as if the user shoots the monster), walls or
other objects at various locations, and the like. The world
map may include information regarding the location of the
objects or semantic information of the objects (e.g., classi-
fications such as whether the object is flat or round, hori-
zontal or vertical, a table or a lamp, etc.) and the world map
can be another valuable input to mixed reality. Pose relative
to the world becomes an input as well and plays a key role
to almost any interactive system.

Controls or inputs from the user are another input to the
wearable system 600. As described herein, user inputs can
include visual input, gestures, totems, audio input, sensory
input, etc. In order to move around or play a game, for
example, the user may need to instruct the wearable system
600 regarding what he or she wants to do. Beyond just
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moving oneself in space, there are various forms of user
controls that may be utilized. In one implementation, a totem
(e.g. a user input device), or an object such as a toy gun may
be held by the user and tracked by the system. The system
preferably will be configured to know that the user is holding
the item and understand what kind of interaction the user is
having with the item (e.g., if the totem or object is a gun, the
system may be configured to understand location and ori-
entation, as well as whether the user is clicking a trigger or
other sensed button or element which may be equipped with
a sensor, such as an IMU, which may assist in determining
what is going on, even when such activity is not within the
field of view of any of the cameras.)

Hand gesture tracking or recognition may also provide
input information. The wearable system 600 may be con-
figured to track and interpret hand gestures for button
presses, for gesturing left or right, stop, grab, hold, etc. For
example, in one configuration, the user may want to flip
through emails or a calendar in a non-gaming environment,
or do a “fist bump” with another person or player. The
wearable system 600 may be configured to leverage a
minimum amount of hand gesture, which may or may not be
dynamic. For example, the gestures may be simple static
gestures like open hand for stop, thumbs up for ok, thumbs
down for not ok; or a hand flip right, or left, or up/down for
directional commands.

Eye tracking is another input (e.g., tracking where the user
is looking to control the display technology to render at a
specific depth or range). In one implementation, vergence of
the eyes may be determined using triangulation, and then
using a vergence/accommodation model developed for that
particular person, accommodation may be determined. Eye
tracking can be performed by the eye camera(s) to determine
eye gaze (e.g., direction or orientation of one or both eyes).
Other techniques can be used for eye tracking such as, e.g.,
measurement of electrical potentials by electrodes placed
near the eye(s) (e.g., electrooculography).

Speech tracking can be another input can be used alone or
in combination with other inputs (e.g., totem tracking, eye
tracking, gesture tracking, etc.). Speech tracking may
include speech recognition, voice recognition, alone or in
combination. The system 600 can include an audio sensor
(e.g., a microphone) that receives an audio stream from the
environment. The system 600 can incorporate voice recog-
nition technology to determine who is speaking (e.g.,
whether the speech is from the wearer of the ARD or another
person or voice (e.g., a recorded voice transmitted by a
loudspeaker in the environment)) as well as speech recog-
nition technology to determine what is being said. The local
data & processing module 260 or the remote processing
module 270 can process the audio data from the microphone
(or audio data in another stream such as, e.g., a video stream
being watched by the user) to identify content of the speech
by applying various speech recognition algorithms, such as,
e.g., hidden Markov models, dynamic time warping (DTW)-
based speech recognitions, neural networks, deep learning
algorithms such as deep feedforward and recurrent neural
networks, end-to-end automatic speech recognitions,
machine learning algorithms (described with reference to
FIG. 7), or other algorithms that uses acoustic modeling or
language modeling, etc.

The local data & processing module 260 or the remote
processing module 270 can also apply voice recognition
algorithms which can identify the identity of the speaker,
such as whether the speaker is the user 210 of the wearable
system 600 or another person with whom the user is con-
versing. Some example voice recognition algorithms can
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include frequency estimation, hidden Markov models,
Gaussian mixture models, pattern matching algorithms, neu-
ral networks, matrix representation, Vector Quantization,
speaker diarisation, decision trees, and dynamic time warp-
ing (DTW) technique. Voice recognition techniques can also
include anti-speaker techniques, such as cohort models, and
world models. Spectral features may be used in representing
speaker characteristics. The local data & processing module
or the remote data processing module 270 can use various
machine learning algorithms described with reference to
FIG. 7 to perform the voice recognition.

An implementation of a wearable system can use these
user controls or inputs via a Ul. Ul elements (e.g., controls,
popup windows, bubbles, data entry fields, etc.) can be used,
for example, to dismiss a display of information, e.g.,
graphics or semantic information of an object.

With regard to the camera systems, the example wearable
system 600 shown in FIG. 6A can include three pairs of
cameras: a relative wide FOV or passive SLAM pair of
cameras arranged to the sides of the user’s face, a different
pair of cameras oriented in front of the user to handle the
stereo imaging process 640 and also to capture hand gestures
and totem/object tracking in front of the user’s face. The
FOV cameras and the pair of cameras for the stereo process
640 may be a part of the outward-facing imaging system 464
(shown in FIG. 4). The wearable system 600 can include eye
tracking cameras (which may be a part of an inward-facing
imaging system 462 shown in FIG. 4) oriented toward the
eyes of the user in order to triangulate eye vectors and other
information. The wearable system 600 may also comprise
one or more textured light projectors (such as infrared (IR)
projectors) to inject texture into a scene.

The wearable system 600 can comprise an avatar pro-
cessing and rendering system 690. The avatar processing
and rendering system 690 can be configured to generate,
update, animate, and render an avatar based on contextual
information. Some or all of the avatar processing and
rendering system 690 can be implemented as part of the
local processing and data module 260 or the remote pro-
cessing module 270 alone or in combination. In various
implementations, multiple avatar processing and rendering
systems 690 (e.g., as implemented on different wearable
devices) can be used for rendering the virtual avatar 670. For
example, a first user’s wearable device may be used to
determine the first user’s intent, while a second user’s
wearable device can determine an avatar’s characteristics
and render the avatar of the first user based on the intent
received from the first user’s wearable device. The first
user’s wearable device and the second user’s wearable
device (or other such wearable devices) can communicate
via a network, for example, as will be described with
reference to FIGS. 9A and 9B.

FIG. 6B illustrates an example avatar processing and
rendering system 690. The example avatar processing and
rendering system 690 can comprise a 3D model processing
system 680, a contextual information analysis system 688,
an avatar autoscaler 692, an intent mapping system 694, an
anatomy adjustment system 698, a stimuli response system
696, alone or in combination. The system 690 is intended to
illustrate functionalities for avatar processing and rendering
and is not intended to be limiting. For example, in certain
implementations, one or more of these systems may be part
of another system. For example, portions of the contextual
information analysis system 688 may be part of the avatar
autoscaler 692, intent mapping system 694, stimuli response
system 696, or anatomy adjustment system 698, individually
or in combination.
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The contextual information analysis system 688 can be
configured to determine environment and object information
based on one or more device sensors described with refer-
ence to FIGS. 2 and 3. For example, the contextual infor-
mation analysis system 688 can analyze environments and
objects (including physical or virtual objects) of a user’s
environment or an environment in which the user’s avatar is
rendered, using images acquired by the outward-facing
imaging system 464 of the user or the viewer of the user’s
avatar. The contextual information analysis system 688 can
analyze such images alone or in combination with a data
acquired from location data or world maps (e.g., maps 620,
710, 910) to determine the location and layout of objects in
the environments. The contextual information analysis sys-
tem 688 can also access biological features of the user or
human in general for animating the virtual avatar 670
realistically. For example, the contextual information analy-
sis system 688 can generate a discomfort curve which can be
applied to the avatar such that a portion of the user’s avatar’s
body (e.g., the head) is not at an uncomfortable (or unreal-
istic) position with respect to the other portions of the user’s
body (e.g., the avatar’s head is not turned 270 degrees). In
certain implementations, one or more object recognizers 708
(shown in FIG. 7) may be implemented as part of the
contextual information analysis system 688.

The avatar autoscaler 692, the intent mapping system 694,
and the stimuli response system 696, and anatomy adjust-
ment system 698 can be configured to determine the avatar’s
characteristics based on contextual information. Some
example characteristics of the avatar can include the size,
appearance, position, orientation, movement, pose, expres-
sion, etc. The avatar autoscaler 692 can be configured to
automatically scale the avatar such that the user does not
have to look at the avatar at an uncomfortable pose. For
example, the avatar autoscaler 692 can increase or decrease
the size of the avatar to bring the avatar to the user’s eye
level such that the user does not need to look down at the
avatar or look up at the avatar respectively. The intent
mapping system 694 can determine an intent of a user’s
interaction and map the intent to an avatar (rather than the
exact user interaction) based on the environment that the
avatar is rendered in. For example, an intent of a first user
may be to communicate with a second user in a telepresence
session (see, e.g., FIG. 9B). Typically, two people face each
other when communicating. The intent mapping system 694
of the first user’s wearable system can determine that such
a face-to-face intent exists during the telepresence session
and can cause the first user’s wearable system to render the
second user’s avatar to be facing the first user. If the second
user were to physically turn around, instead of rendering the
second user’s avatar in a turned position (which would cause
the back of the second user’s avatar to be rendered to the first
user), the first user’s intent mapping system 694 can con-
tinue to render the second avatar’s face to the first user,
which is the inferred intent of the telepresence session (e.g.,
face-to-face intent in this example).

The stimuli response system 696 can identify an object of
interest in the environment and determine an avatar’s
response to the object of interest. For example, the stimuli
response system 696 can identify a sound source in an
avatar’s environment and automatically turn the avatar to
look at the sound source. The stimuli response system 696
can also determine a threshold termination condition. For
example, the stimuli response system 696 can cause the
avatar to go back to its original pose after the sound source
disappears or after a period of time has elapsed.
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The anatomy adjustment system 698 can be configured to
adjust the user’s pose based on biological features. For
example, the anatomy adjustment system 698 can be con-
figured to adjust relative positions between the user’s head
and the user’s torso or between the user’s upper body and
lower body based on a discomfort curve.

The 3D model processing system 680 can be configured
to animate and cause the display 220 to render a virtual
avatar 670. The 3D model processing system 680 can
include a virtual character processing system 682 and a
movement processing system 684. The virtual character
processing system 682 can be configured to generate and
update a 3D model of a user (for creating and animating the
virtual avatar). The movement processing system 684 can be
configured to animate the avatar, such as, e.g., by changing
the avatar’s pose, by moving the avatar around in a user’s
environment, or by animating the avatar’s facial expres-
sions, etc. As will further be described herein, the virtual
avatar can be animated using rigging techniques. In some
implementations, an avatar is represented in two parts: a
surface representation (e.g., a deformable mesh) that is used
to render the outward appearance of the virtual avatar and a
hierarchical set of interconnected joints (e.g., a core skel-
eton) for animating the mesh. In some implementations, the
virtual character processing system 682 can be configured to
edit or generate surface representations, while the movement
processing system 684 can be used to animate the avatar by
moving the avatar, deforming the mesh, etc.

Examples of Mapping a User’s Environment

FIG. 7 is a block diagram of an example of an MR
environment 700. The MR environment 700 may be con-
figured to receive input (e.g., visual input 702 from the
user’s wearable system, stationary input 704 such as room
cameras, sensory input 706 from various sensors, gestures,
totems, eye tracking, user input from the user input device
466 etc.) from one or more user wearable systems (e.g.,
wearable system 200 or display 220) or stationary room
systems (e.g., room cameras, etc.). The wearable systems
can use various sensors (e.g., accelerometers, gyroscopes,
temperature sensors, movement sensors, depth sensors, GPS
sensors, inward-facing imaging system, outward-facing
imaging system, etc.) to determine the location and various
other attributes of the environment of the user. This infor-
mation may further be supplemented with information from
stationary cameras in the room that may provide images or
various cues from a different point of view. The image data
acquired by the cameras (such as the room cameras and/or
the cameras of the outward-facing imaging system) may be
reduced to a set of mapping points.

One or more object recognizers 708 can crawl through the
received data (e.g., the collection of points) and recognize or
map points, tag images, attach semantic information to
objects with the help of a map database 710. The map
database 710 may comprise various points collected over
time and their corresponding objects. The various devices
and the map database can be connected to each other through
a network (e.g., LAN, WAN, etc.) to access the cloud.

Based on this information and collection of points in the
map database, the object recognizers 708a to 708z may
recognize objects in an environment. For example, the
object recognizers can recognize faces, persons, windows,
walls, user input devices, televisions, documents (e.g., travel
tickets, driver’s license, passport as described in the security
examples herein), other objects in the user’s environment,
etc. One or more object recognizers may be specialized for
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object with certain characteristics. For example, the object
recognizer 708a may be used to recognizer faces, while
another object recognizer may be used recognize docu-
ments.

The object recognitions may be performed using a variety
of computer vision techniques. For example, the wearable
system can analyze the images acquired by the outward-
facing imaging system 464 (shown in FIG. 4) to perform
scene reconstruction, event detection, video tracking, object
recognition (e.g., persons or documents), object pose esti-
mation, facial recognition (e.g., from a person in the envi-
ronment or an image on a document), learning, indexing,
motion estimation, or image analysis (e.g., identifying indi-
cia within documents such as photos, signatures, identifica-
tion information, travel information, etc.), and so forth. One
or more computer vision algorithms may be used to perform
these tasks. Non-limiting examples of computer vision algo-
rithms include: Scale-invariant feature transform (SIFT),
speeded up robust features (SURF), oriented FAST and
rotated BRIEF (ORB), binary robust invariant scalable
keypoints (BRISK), fast retina keypoint (FREAK), Viola-
Jones algorithm, Figenfaces approach, Lucas-Kanade algo-
rithm, Horn-Schunk algorithm, Mean-shift algorithm, visual
simultaneous location and mapping (vVSLAM) techniques, a
sequential Bayesian estimator (e.g., Kalman filter, extended
Kalman filter, etc.), bundle adjustment, Adaptive threshold-
ing (and other thresholding techniques), Iterative Closest
Point (ICP), Semi Global Matching (SGM), Semi Global
Block Matching (SGBM), Feature Point Histograms, vari-
ous machine learning algorithms (such as e.g., support
vector machine, k-nearest neighbors algorithm, Naive
Bayes, neural network (including convolutional or deep
neural networks), or other supervised/unsupervised models,
etc.), and so forth.

The object recognitions can additionally or alternatively
be performed by a variety of machine learning algorithms.
Once trained, the machine learning algorithm can be stored
by the HMD. Some examples of machine learning algo-
rithms can include supervised or non-supervised machine
learning algorithms, including regression algorithms (such
as, for example, Ordinary Least Squares Regression),
instance-based algorithms (such as, for example, Learning
Vector Quantization), decision tree algorithms (such as, for
example, classification and regression trees), Bayesian algo-
rithms (such as, for example, Naive Bayes), clustering
algorithms (such as, for example, k-means clustering), asso-
ciation rule learning algorithms (such as, for example,
a-priori algorithms), artificial neural network algorithms
(such as, for example, Perceptron), deep learning algorithms
(such as, for example, Deep Boltzmann Machine, or deep
neural network), dimensionality reduction algorithms (such
as, for example, Principal Component Analysis), ensemble
algorithms (such as, for example, Stacked Generalization),
and/or other machine learning algorithms. In some imple-
mentations, individual models can be customized for indi-
vidual data sets. For example, the wearable device can
generate or store a base model. The base model may be used
as a starting point to generate additional models specific to
a data type (e.g., a particular user in the telepresence
session), a data set (e.g., a set of additional images obtained
of the user in the telepresence session), conditional situa-
tions, or other variations. In some implementations, the
wearable HMD can be configured to utilize a plurality of
techniques to generate models for analysis of the aggregated
data. Other techniques may include using pre-defined
thresholds or data values.
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Based on this information and collection of points in the
map database, the object recognizers 708a to 708z may
recognize objects and supplement objects with semantic
information to give life to the objects. For example, if the
object recognizer recognizes a set of points to be a door, the
system may attach some semantic information (e.g., the door
has a hinge and has a 90 degree movement about the hinge).
If the object recognizer recognizes a set of points to be a
mirror, the system may attach semantic information that the
mirror has a reflective surface that can reflect images of
objects in the room. The semantic information can include
affordances of the objects as described herein. For example,
the semantic information may include a normal of the object.
The system can assign a vector whose direction indicates the
normal of the object. Over time the map database grows as
the system (which may reside locally or may be accessible
through a wireless network) accumulates more data from the
world. Once the objects are recognized, the information may
be transmitted to one or more wearable systems. For
example, the MR environment 700 may include information
about a scene happening in California. The environment 700
may be transmitted to one or more users in New York. Based
on data received from an FOV camera and other inputs, the
object recognizers and other software components can map
the points collected from the various images, recognize
objects etc., such that the scene may be accurately “passed
over” to a second user, who may be in a different part of the
world. The environment 700 may also use a topological map
for localization purposes.

FIG. 8 is a process flow diagram of an example of a
method 800 of rendering virtual content in relation to
recognized objects. The method 800 describes how a virtual
scene may be presented to a user of the wearable system.
The user may be geographically remote from the scene. For
example, the user may be in New York, but may want to
view a scene that is presently going on in California, or may
want to go on a walk with a friend who resides in California.

Atblock 810, the wearable system may receive input from
the user and other users regarding the environment of the
user. This may be achieved through various input devices,
and knowledge already possessed in the map database. The
user’s FOV camera, sensors, GPS, eye tracking, etc., convey
information to the system at block 810. The system may
determine sparse points based on this information at block
820. The sparse points may be used in determining pose data
(e.g., head pose, eye pose, body pose, or hand gestures) that
can be used in displaying and understanding the orientation
and position of various objects in the user’s surroundings.
The object recognizers 708a-708% may crawl through these
collected points and recognize one or more objects using a
map database at block 830. This information may then be
conveyed to the user’s individual wearable system at block
840, and the desired virtual scene may be accordingly
displayed to the user at block 850. For example, the desired
virtual scene (e.g., user in CA) may be displayed at the
appropriate orientation, position, etc., in relation to the
various objects and other surroundings of the user in New
York.

Example Communications Among Multiple
Wearable Systems

FIG. 9A schematically illustrates an overall system view
depicting multiple user devices interacting with each other.
The computing environment 900 includes user devices
930a, 9305, 930c. The user devices 930a, 9305, and 930¢
can communicate with each other through a network 990.
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The user devices 930a-930c¢ can each include a network
interface to communicate via the network 990 with a remote
computing system 920 (which may also include a network
interface 971). The network 990 may be a LAN, WAN,
peer-to-peer network, radio, Bluetooth, or any other net-
work. The computing environment 900 can also include one
or more remote computing systems 920. The remote com-
puting system 920 may include server computer systems that
are clustered and located at different geographic locations.
The user devices 930a, 9305, and 930c may communicate
with the remote computing system 920 via the network 990.

The remote computing system 920 may include a remote
data repository 980 which can maintain information about a
specific user’s physical and/or virtual worlds. Data storage
980 can store information related to users, users’ environ-
ment (e.g., world maps of the user’s environment), or
configurations of avatars of the users. The remote data
repository may be an implementation of the remote data
repository 280 shown in FIG. 2. The remote computing
system 920 may also include a remote processing module
970. The remote processing module 970 may be an imple-
mentation of the remote processing module 270 shown in
FIG. 2. The remote processing module 970 may include one
or more processors which can communicate with the user
devices (930qa, 9305, 930¢) and the remote data repository
980. The processors can process information obtained from
user devices and other sources. In some implementations, at
least a portion of the processing or storage can be provided
by the local processing and data module 260 (as shown in
FIG. 2). The remote computing system 920 may enable a
given user to share information about the specific user’s own
physical and/or virtual worlds with another user.

The user device may be a wearable device (such as an
HMD or an ARD), a computer, a mobile device, or any other
devices alone or in combination. For example, the user
devices 9305 and 930c¢ may be an implementation of the
wearable system 200 shown in FIG. 2 (or the wearable
system 400 shown in FIG. 4) which can be configured to
present AR/VR/MR content.

One or more of the user devices can be used with the user
input device 466 shown in FIG. 4. A user device can obtain
information about the user and the user’s environment (e.g.,
using the outward-facing imaging system 464 shown in FI1G.
4). The user device and/or remote computing system 920
(FIG. 9A) can construct, update, and build a collection of
images, points and other information using the information
obtained from the user devices. For example, the user device
may process raw information acquired and send the pro-
cessed information to the remote computing system 920 for
further processing. The user device may also send the raw
information to the remote computing system 920 for pro-
cessing. The user device may receive the processed infor-
mation from the remote computing system 920 and provide
final processing before projecting to the user. The user
device may also process the information obtained and pass
the processed information to other user devices. The user
device may communicate with the remote data repository
980 while processing acquired information. Multiple user
devices and/or multiple server computer systems may par-
ticipate in the construction and/or processing of acquired
images.

The information on the physical worlds may be developed
over time and may be based on the information collected by
different user devices. Models of virtual worlds may also be
developed over time and be based on the inputs of different
users. Such information and models can sometimes be
referred to herein as a world map or a world model. As
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described with reference to FIGS. 6 and 7, information
acquired by the user devices may be used to construct a
world map 910. The world map 910 may include at least a
portion of the map 620 described in FIG. 6 A. Various object
recognizers (e.g. 708a, 708b, 708¢ . . . 708») may be used
to recognize objects and tag images, as well as to attach
semantic information to the objects. These object recogniz-
ers are also described in FIG. 7.

The remote data repository 980 can be used to store data
and to facilitate the construction of the world map 910. The
user device can constantly update information about the
user’s environment and receive information about the world
map 910. The world map 910 may be created by the user or
by someone else. As discussed herein, user devices (e.g.
930a, 9305, 930¢) and remote computing system 920, alone
or in combination, may construct and/or update the world
map 910. For example, a user device may be in communi-
cation with the remote processing module 970 and the
remote data repository 980. The user device may acquire
and/or process information about the user and the user’s
environment. The remote processing module 970 may be in
communication with the remote data repository 980 and user
devices (e.g. 930a, 9305, 930¢) to process information about
the user and the user’s environment. The remote computing
system 920 can modify the information acquired by the user
devices (e.g. 930a, 9305, 930c), such as, e.g. selectively
cropping a user’s image, modifying the user’s background,
adding virtual objects to the user’s environment, annotating
a user’s speech with auxiliary information, etc. The remote
computing system 920 can send the processed information
to the same and/or different user devices.

Examples of a Telepresence Session

FIG. 9B depicts an example where two users of respective
wearable systems are conducting a telepresence session.
Two users (named Alice 912 and Bob 914 in this example)
are shown in this figure. The two users are wearing their
respective wearable devices 902 and 904 which can include
an HMD described with reference to FIG. 2 (e.g., the display
220 of the wearable system 200) for representing a virtual
avatar of the other user in the telepresence session. The two
users can conduct a telepresence session using the wearable
device. Note that the vertical line in FIG. 9B separating the
two users is intended to illustrate that Alice 912 and Bob 914
may (but need not) be in two different locations while they
communicate via telepresence (e.g., Alice may be inside her
office in Atlanta while Bob is outdoors in Boston).

As described with reference to FIG. 9A, the wearable
devices 902 and 904 may be in communication with each
other or with other user devices and computer systems. For
example, Alice’s wearable device 902 may be in commu-
nication with Bob’s wearable device 904, e.g., via the
network 990 (shown in FIG. 9A). The wearable devices 902
and 904 can track the users’ environments and movements
in the environments (e.g., via the respective outward-facing
imaging system 464, or one or more location sensors) and
speech (e.g., via the respective audio sensor). The wearable
devices 902 and 904 can also track the users’ eye move-
ments or gaze based on data acquired by the inward-facing
imaging system 462. In some situations, the wearable device
can also capture or track a user’s facial expressions or other
body movements (e.g., arm or leg movements) where a user
is near a reflective surface and the outward-facing imaging
system 464 can obtain reflected images of the user to
observe the user’s facial expressions or other body move-
ments.
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A wearable device can use information acquired of a first
user and the environment to animate a virtual avatar that will
be rendered by a second user’s wearable device to create a
tangible sense of presence of the first user in the second
user’s environment. For example, the wearable devices 902
and 904, the remote computing system 920, alone or in
combination, may process Alice’s images or movements for
presentation by Bob’s wearable device 904 or may process
Bob’s images or movements for presentation by Alice’s
wearable device 902. As further described herein, the avatars
can be rendered based on contextual information such as,
e.g., a user’s intent, an environment of the user or an
environment in which the avatar is rendered, or other
biological features of a human.

Although the examples only refer to two users, the
techniques described herein should not be limited to two
users. Multiple users (e.g., two, three, four, five, six, or
more) using wearables (or other telepresence devices) may
participate in a telepresence session. A particular user’s
wearable device can present to that particular user the
avatars of the other users during the telepresence session.
Further, while the examples in this figure show users as
standing in an environment, the users are not required to
stand. Any of the users may stand, sit, kneel, lie down, walk
or run, or be in any position or movement during a telep-
resence session. The user may also be in a physical envi-
ronment other than described in examples herein. The users
may be in separate environments or may be in the same
environment while conducting the telepresence session. Not
all users are required to wear their respective HMDs in the
telepresence session. For example, Alice 912 may use other
image acquisition and display devices such as a webcam and
computer screen while Bob 914 wears the wearable device
904.

Examples of a Virtual Avatar

FIG. 10 illustrates an example of an avatar as perceived
by a user of a wearable system. The example avatar 1000
shown in FIG. 10 can be an avatar of Alice 912 (shown in
FIG. 9B) standing behind a physical plant in a room. An
avatar can include various characteristics, such as for
example, size, appearance (e.g., skin color, complexion, hair
style, clothes, facial features, such as wrinkles, moles,
blemishes, pimples, dimples, etc.), position, orientation,
movement, pose, expression, etc. These characteristics may
be based on the user associated with the avatar (e.g., the
avatar 1000 of Alice may have some or all characteristics of
the actual person Alice 912). As further described herein, the
avatar 1000 can be animated based on contextual informa-
tion, which can include adjustments to one or more of the
characteristics of the avatar 1000. Although generally
described herein as representing the physical appearance of
the person (e.g., Alice), this is for illustration and not
limitation. Alice’s avatar could represent the appearance of
another real or fictional human being besides Alice, a
personified object, a creature, or any other real or fictitious
representation. Further, the plant in FIG. 10 need not be
physical, but could be a virtual representation of a plant that
is presented to the user by the wearable system. Also,
additional or different virtual content than shown in FIG. 10
could be presented to the user.

Examples of Rigging Systems for Virtual
Characters

An animated virtual character, such as a human avatar,
can be wholly or partially represented in computer graphics
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as a polygon mesh. A polygon mesh, or simply “mesh” for
short, is a collection of points in a modeled three-dimen-
sional space. The mesh can form a polyhedral object whose
surfaces define the body or shape of the virtual character (or
a portion thereof). While meshes can include any number of
points (within practical limits which may be imposed by
available computing power), finer meshes with more points
are generally able to portray more realistic virtual characters
with finer details that may closely approximate real life
people, animals, objects, etc. FIG. 10 shows an example of
a mesh 1010 around an eye of the avatar 1000.

Each point in the mesh can be defined by a coordinate in
the modeled three-dimensional space. The modeled three-
dimensional space can be, for example, a Cartesian space
addressed by (x, vy, z) coordinates. The points in the mesh are
the vertices of the polygons which make up the polyhedral
object. Each polygon represents a surface, or face, of the
polyhedral object and is defined by an ordered set of
vertices, with the sides of each polygon being straight line
edges connecting the ordered set of vertices. In some cases,
the polygon vertices in a mesh may differ from geometric
polygons in that they are not necessarily coplanar in 3D
graphics. In addition, the vertices of a polygon in a mesh
may be collinear, in which case the polygon has zero area
(referred to as a degenerate polygon).

In some implementations, a mesh is made up of three-
vertex polygons (i.e., triangles or “tris” for short) or four-
vertex polygons (i.e., quadrilaterals or “quads™ for short).
However, higher-order polygons can also be used in some
meshes. Meshes are typically quad-based in direct content
creation (DCC) applications (e.g., applications such as Maya
(available from Autodesk, Inc.) or Houdini (available from
Side Effects Software Inc.) which are primarily designed for
creating and manipulating 3D computer graphics), whereas
meshes are typically tri-based in real-time applications.

To animate a virtual character, its mesh can be deformed
by moving some or all of its vertices to new positions in
space at various instants in time. The deformations can
represent both large-scale movements (e.g., movement of
limbs) and fine movements (e.g., facial movements). These
and other deformations can be based on real-world models
(e.g., photogrammetric scans of real humans performing
body movements, articulations, facial contortions, expres-
sions, etc.), art-directed development (which may be based
on real-world sampling), combinations of the same, or other
techniques. In the early days of computer graphics, mesh
deformations could be accomplished manually by indepen-
dently setting new positions for the vertices, but given the
size and complexity of modern meshes it is typically desir-
able to produce deformations using automated systems and
processes. The control systems, processes, and techniques
for producing these deformations are referred to as rigging,
or simply “the rig.” The example avatar processing and
rendering system 690 of FIG. 6B includes a 3D model
processing system 680 which can implement rigging.

The rigging for a virtual character can use skeletal sys-
tems to assist with mesh deformations. A skeletal system
includes a collection of joints which correspond to points of
articulation for the mesh. In the context of rigging, joints are
sometimes also referred to as “bones” despite the difference
between these terms when used in the anatomical sense.
Joints in a skeletal system can move, or otherwise change,
with respect to one another according to transforms which
can be applied to the joints. The transforms can include
translations or rotations in space, as well as other operations.
The joints can be assigned hierarchical relationships (e.g.,
parent-child relationships) with respect to one another.
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These hierarchical relationships can allow one joint to
inherit transforms or other characteristics from another joint.
For example, a child joint in a skeletal system can inherit a
transform assigned to its parent joint so as to cause the child
joint to move together with the parent joint.

A skeletal system for a virtual character can be defined
with joints at appropriate positions, and with appropriate
local axes of rotation, degrees of freedom, etc., to allow for
a desired set of mesh deformations to be carried out. Once
a skeletal system has been defined for a virtual character,
each joint can be assigned, in a process called “skinning,” an
amount of influence over the various vertices in the mesh.
This can be done by assigning a weight value to each vertex
for each joint in the skeletal system. When a transform is
applied to any given joint, the vertices under its influence
can be moved, or otherwise altered, automatically based on
that joint transform by amounts which can be dependent
upon their respective weight values.

A rig can include multiple skeletal systems. One type of
skeletal system is a core skeleton (also referred to as a
low-order skeleton) which can be used to control large-scale
movements of the virtual character. In the case of a human
avatar, for example, the core skeleton might resemble the
anatomical skeleton of a human. Although the core skeleton
for rigging purposes may not map exactly to an anatomi-
cally-correct skeleton, it may have a sub-set of joints in
analogous locations with analogous orientations and move-
ment properties.

As briefly mentioned above, a skeletal system of joints
can be hierarchical with, for example, parent-child relation-
ships among joints. When a transform (e.g., a change in
position and/or orientation) is applied to a particular joint in
the skeletal system, the same transform can be applied to all
other lower-level joints within the same hierarchy. In the
case of a rig for a human avatar, for example, the core
skeleton may include separate joints for the avatar’s shoul-
der, elbow, and wrist. Among these, the shoulder joint may
be assigned to the highest level in the hierarchy, while the
elbow joint can be assigned as a child of the shoulder joint,
and the wrist joint can be assigned as a child of the elbow
joint. Accordingly, when a particular translation and/or
rotation transform is applied to the shoulder joint, the same
transform can also be applied to the elbow joint and the wrist
joint such that they are translated and/or rotated in the same
way as the shoulder.

Despite the connotations of its name, a skeletal system in
a rig need not necessarily represent an anatomical skeleton.
In rigging, skeletal systems can represent a wide variety of
hierarchies used to control deformations of the mesh. For
example, hair can be represented as a series of joints in a
hierarchical chain; skin motions due to an avatar’s facial
contortions (which may represent expressions such as smil-
ing, frowning, laughing, speaking, blinking, etc.) can be
represented by a series of facial joints controlled by a facial
rig; muscle deformation can be modeled by joints; and
motion of clothing can be represented by a grid of joints.

The rig for a virtual character can include multiple
skeletal systems, some of which may drive the movement of
others. A lower-order skeletal system is one which drives
one or more higher-order skeletal systems. Conversely,
higher-order skeletal systems are ones which are driven or
controlled by a lower-order skeletal system. For example,
whereas the movements of the core skeleton of a character
might be controlled manually by an animator, the core
skeleton can in turn drive or control the movements of a
higher-order skeletal system. For example, higher-order
helper joints—which may not have anatomical analogs in a
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physical skeleton—can be provided to improve the mesh
deformations which result from movements of the core
skeleton. The transforms applied to these and other joints in
higher-order skeletal systems may be derived algorithmi-
cally from the transforms applied to the lower-order skel-
eton. Higher-order skeletons can represent, for example,
muscles, skin, fat, clothing, hair, or any other skeletal system
which does not require direct animation control.

As already discussed, transforms can be applied to joints
in skeletal systems in order to carry out mesh deformations.
In the context of rigging, transforms include functions which
accept one or more given points in 3D space and produce an
output of one or more new 3D points. For example, a
transform can accept one or more 3D points which define a
joint and can output one or more new 3D points which
specify the transformed joint. Joint transforms can include,
for example, a translation component, a rotation component,
and a scale component.

A translation is a transform which moves a set of one or
more specified points in the modeled 3D space by a specified
amount with no change in the orientation or size of the set
of points. A rotation is a transform which rotates a set of one
or more specified points in the modeled 3D space about a
specified axis by a specified amount (e.g., rotate every point
in the mesh 45 degrees about the z-axis). An affine transform
(or 6 degree of freedom (DOF) transform) is one which only
includes translation(s) and rotation(s). Application of an
affine transform can be thought of as moving a set of one or
more points in space without changing its size, though the
orientation can change.

Meanwhile, a scale transform is one which modifies one
or more specified points in the modeled 3D space by scaling
their respective coordinates by a specified value. This
changes the size and/or shape of the transformed set of
points. A uniform scale transform scales each coordinate by
the same amount, whereas a non-uniform scale transform
can scale the (%, y, z) coordinates of the specified points
independently. A non-uniform scale transform can be used,
for example, to provide squashing and stretching effects,
such as those which may result from muscular action. Yet
another type of transform is a shear transform. A shear
transform is one which modifies a set of one or more
specified points in the modeled 3D space by translating a
coordinate of the points by different amounts based on the
distance of that coordinate from an axis.

When a transform is applied to a joint to cause it to move,
the vertices under the influence of that joint are also moved.
This results in deformations of the mesh. As discussed
above, the process of assigning weights to quantify the
influence each joint has over each vertex is called skinning
(or sometimes “weight painting” or “skin weighting”). The
weights are typically values between 0 (meaning no influ-
ence) and 1 (meaning complete influence). Some vertices in
the mesh may be influenced only by a single joint. In that
case those vertices are assigned weight values of 1 for that
joint, and their positions are changed based on transforms
assigned to that specific joint but no others. Other vertices in
the mesh may be influenced by multiple joints. In that case,
separate weights are assigned to those vertices for all of the
influencing joints, with the sum of the weights for each
vertex equaling 1. The positions of these vertices are
changed based on transforms assigned to all of their influ-
encing joints.

Making weight assignments for all of the vertices in a
mesh can be extremely labor intensive, especially as the
number of joints increases. Balancing the weights to achieve
desired mesh deformations in response to transforms applied
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to the joints can be quite difficult for even highly trained
artists. In the case of real-time applications, the task can be
complicated further by the fact that many real-time systems
also enforce limits on the number of joints (generally 8 or
fewer) which can be weighted to a specific vertex. Such
limits are typically imposed for the sake of efficiency in the
graphics processing unit (GPU).

The term skinning also refers to the process of actually
deforming the mesh, using the assigned weights, based on
transforms applied to the joints in a skeletal system. For
example, a series of core skeleton joint transforms may be
specified by an animator to produce a desired character
movement (e.g., a running movement or a dance step). When
transforms are applied to one or more of the joints, new
positions are calculated for the vertices under the influence
of the transformed joints. The new position for any given
vertex is typically computed as a weighted average of all the
joint transforms which influence that particular vertex.
There are many algorithms used for computing this
weighted average, but the most common, and the one used
in most real-time applications due to its simplicity and ease
of control, is linear blend skinning (L.BS). In linear blend
skinning, a new position for each vertex is calculated using
each joint transform for which that vertex has a non-zero
weight. Then, the new vertex coordinates resulting from
each of these joint transforms are averaged in proportion to
the respective weights assigned to that vertex for each of the
joints. There are well known limitations to LBS in practice,
and much of the work in making high-quality rigs is devoted
to finding and overcoming these limitations. Many helper
joint systems are designed specifically for this purpose.

In addition to skeletal systems, “blendshapes” can also be
used in rigging to produce mesh deformations. A blendshape
(sometimes also called a “morph target” or just a “shape”)
is a deformation applied to a set of vertices in the mesh
where each vertex in the set is moved a specified amount in
a specified direction based upon a weight. Each vertex in the
set may have its own custom motion for a specific blend-
shape, and moving the vertices in the set simultaneously will
generate the desired shape. The custom motion for each
vertex in a blendshape can be specified by a “delta,” which
is a vector representing the amount and direction of XYZ
motion applied to that vertex. Blendshapes can be used to
produce, for example, facial deformations to move the eyes,
lips, brows, nose, dimples, etc., just to name a few possi-
bilities.

Blendshapes are useful for deforming the mesh in an
art-directable way. They offer a great deal of control, as the
exact shape can be sculpted or captured from a scan of a
model. But the benefits of blendshapes come at the cost of
having to store the deltas for all the vertices in the blend-
shape. For animated characters with fine meshes and many
blendshapes, the amount of delta data can be significant.

Each blendshape can be applied to a specified degree by
using blendshape weights. These weights typically range
from O (where the blendshape is not applied at all) to 1
(where the blendshape is fully active). For example, a
blendshape to move a character’s eyes can be applied with
a small weight to move the eyes a small amount, or it can be
applied with a large weight to create a larger eye movement.

The rig may apply multiple blendshapes in combinations
with one another to achieve a desired complex deformation.
For example, to produce a smile, the rig may apply blend-
shapes for lip corner pull, raising the upper lip, and lowering
the lower lip, as well as moving the eyes, brows, nose, and
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dimples. The desired shape from combining two or more
blendshapes is known as a combination shape (or simply a
“combo”).

One problem that can result from applying two blend-
shapes in combination is that the blendshapes may operate
on some of the same vertices. When both blendshapes are
active, the result is called a double transform or “going
off-model.” The solution to this is typically a corrective
blendshape. A corrective blendshape is a special blendshape
which represents a desired deformation with respect to a
currently applied deformation rather than representing a
desired deformation with respect to the neutral. Corrective
blendshapes (or just “correctives™) can be applied based
upon the weights of the blendshapes they are correcting. For
example, the weight for the corrective blendshape can be
made proportionate to the weights of the underlying blend-
shapes which trigger application of the corrective blend-
shape.

Corrective blendshapes can also be used to correct skin-
ning anomalies or to improve the quality of a deformation.
For example, a joint may represent the motion of a specific
muscle, but as a single transform it cannot represent all the
non-linear behaviors of the skin, fat, and muscle. Applying
a corrective, or a series of correctives, as the muscle acti-
vates can result in more pleasing and convincing deforma-
tions.

Rigs are built in layers, with lower, simpler layers often
driving higher-order layers. This applies to both skeletal
systems and blendshape deformations. For example, as
already mentioned, the rigging for an animated virtual
character may include higher-order skeletal systems which
are controlled by lower-order skeletal systems. There are
many ways to control a higher-order skeleton or a blend-
shape based upon a lower-order skeleton, including con-
straints, logic systems, and pose-based deformation.

A constraint is typically a system where a particular object
or joint transform controls one or more components of a
transform applied to another joint or object. There are many
different types of constraints. For example, aim constraints
change the rotation of the target transform to point in
specific directions or at specific objects. Parent constraints
act as virtual parent-child relationships between pairs of
transforms. Position constraints constrain a transform to
specific points or a specific object. Orientation constraints
constrain a transform to a specific rotation of an object.

Logic systems are systems of mathematical equations
which produce some outputs given a set of inputs. These are
specified, not learned. For example, a blendshape value
might be defined as the product of two other blendshapes
(this is an example of a corrective shape known as a
combination or combo shape).

Pose-based deformations can also be used to control
higher-order skeletal systems or blendshapes. The pose of a
skeletal system is defined by the collection of transforms
(e.g., rotation(s) and translation(s)) for all the joints in that
skeletal system. Poses can also be defined for subsets of the
joints in a skeletal system. For example, an arm pose could
be defined by the transforms applied to the shoulder, elbow,
and wrist joints. A pose space deformer (PSD) is a system
used to determine a deformation output for a particular pose
based on one or more “distances” between that pose and a
defined pose. These distances can be metrics which charac-
terize how different one of the poses is from the other. APSD
can include a pose interpolation node which, for example,
accepts a set of joint rotations (defining a pose) as input
parameters and in turn outputs normalized per-pose weights
to drive a deformer, such as a blendshape. The pose inter-
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polation node can be implemented in a variety of ways,
including with radial basis functions (RBFs). RBFs can
perform a machine-learned mathematical approximation of
a function. RBFs can be trained using a set of inputs and
their associated expected outputs. The training data could
be, for example, multiple sets of joint transforms (which
define particular poses) and the corresponding blendshapes
to be applied in response to those poses. Once the function
is learned, new inputs (e.g., poses) can be given and their
expected outputs can be computed efficiently. RBFs are a
subtype of artificial neural networks. RBFs can be used to
drive higher-level components of a rig based upon the state
of lower-level components. For example, the pose of a core
skeleton can drive helper joints and correctives at higher
levels.

These control systems can be chained together to perform
complex behaviors. As an example, an eye rig could contain
two “look around” values for horizontal and vertical rota-
tion. These values can be passed through some logic to
determine the exact rotation of an eye joint transform, which
might in turn be used as an input to an RBF which controls
blendshapes that change the shape of the eyelid to match the
position of the eye. The activation values of these shapes
might be used to drive other components of a facial expres-
sion using additional logic, and so on.

The goal of rigging systems is typically to provide a
mechanism to produce pleasing, high-fidelity deformations
based on simple, human-understandable control systems. In
the case of real-time applications, the goal is typically to
provide rigging systems which are simple enough to run in
real-time on, for example, a VR/AR/MR wearable system
200, while making as few compromises to the final quality
as possible. In some implementations, the 3D model pro-
cessing system 680 executes a rigging system to animate an
avatar in a mixed reality environment 100 in real-time to be
interactive (with users of the VR/AR/MR system) and to
provide appropriate, contextual avatar behavior (e.g., intent-
based behavior) in the user’s environment.

FIG. 11 illustrates examples of selecting a virtual object
using a combination of user input modes. In the scene
14004, the wearable system can present a user 1101 with a
plurality of virtual objects, represented by a square 1422, a
circle 1424, and a triangle 1426. The user 1101 can interact
with the virtual objects using head pose as illustrated in the
scene 140054. This is an example of a head pose input mode.

The head pose input mode may involve a cone cast to
target or select virtual objects. For example, the wearable
system can cast a cone 1102 from a user’s head toward the
virtual objects. The wearable system can detect whether one
or more of the virtual objects fall within the volume of the
cone to identify which object the user intends to select. In
this example, the cone 1102 intersects with the circle 1424
and the triangle 1426. Therefore, the wearable system can
determine that the user intends to select either the circle
1424 or the triangle 1426. However, because the cone 1102
intersects with both the circle 1424 and the triangle 1426, the
wearable system may not be able to ascertain whether the
target virtual object is the circle 1424 or the triangle 1426
based on the head pose input alone.

In the scene 1400¢, the user 1101 can interact with the
virtual objects by manually orienting a user input device
466, such as totem (e.g., a handheld remote control device).
This is an example of a gesture input mode. In this scene, the
wearable system can determine that either the circle 1424 or
the square 1422 is the intended target because these two
objects are in the direction at which the user input device
466 is pointing. In this example, the wearable system can
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determine the direction of the user input device 466 by
detecting a position or orientation of the user input device
466 (e.g., via an IMU in the user input device 466), or by
performing a cone cast originating from the user input
device 466. Because both the circle 1424 and the square
1422 are candidates for the target virtual object, the wear-
able system cannot ascertain with a high confidence level
which one of them is the object that the user actually wants
to select based solely on the gesture input mode.

In the scene 14004, the wearable system can use multi-
modal user inputs to determine the target virtual object. For
example, the wearable system can use both the results
obtained from the cone cast (head pose input mode) and
from the orientation of the user input device (gesture input
mode) to identify the target virtual object. In this example,
the circle 1424 is the candidate identified in both the result
from the cone cast and the result obtained from the user
input device. Therefore, the wearable system can determine
with high confidence, using these two input modes, that the
target virtual object is the circle 1424. As further illustrated
in the scene 1400 J, the user can give a voice command 1442
(illustrated as “Move that”), which is an example of a third
input mode (namely, voice), to interact with the target virtual
object. The wearable system can associate the word “that”
with the target virtual object, the word “Move” with the
command to be executed, and can accordingly move the
circle 1424. However, the voice command 1442 by itself
(without indications from the user input device 466 or the
cone cast 143) may cause confusion to the wearable system,
because the wearable system may not know which object is
associated with the word “that”.

Advantageously, in some implementations, by accepting
multiple modes of input to identify and interact with a virtual
object, the amount of precision required for each mode of
input may be reduced. For example, the cone cast may not
be able to pinpoint an object at a rendering plane that is far
away because the diameter of the cone increases as the cone
gets farther away from the user. As other examples, the user
may need to hold the input device at a particular orientation
to point toward a target object and speak with a particular
phrase or pace to ensure the correct voice input. However, by
combining the voice input and the results from the cone cast
(either from a head pose or a gesture using the input device),
the wearable system can still identify the target virtual object
without requiring either input (e.g., the cone cast or the voice
input) to be precise. For example, even though the cone cast
selects multiple objects (e.g., as described with reference to
scenes 14005, 1400¢), the voice input may help narrow
down the selection (e.g., increase the confidence score for
the selection). For example, the cone cast may capture 3
objects, among which the first object is to the user’s right,
the second object is to the user’s left, and the third object is
in the center of the user’s FOV. The user can narrow the
selection by saying “select the rightmost object”. As another
example, there may be two identically shaped objects in the
user’s FOV. In order for the user to select the correct object,
the user may need to give more descriptions to the object via
voice command. For example, rather than saying “select the
square object”, the user may need to say “select the square
object that is red”. However, with cone cast, the voice
command may not have to be as precise. For example, the
user can look at one of the square object and say “select the
square object” or even “select the object”. The wearable
system can automatically select the square object that coin-
cides with the user’s gaze direction and will not select the
square object that is not in the user’s gaze direction.
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In some implementations, the system may have a hierar-
chy of preferences for combinations of input modes. For
example, a user tends to look in the direction his or her head
is pointing; therefore, eye gaze and head pose may provide
information that is similar to each other. A combination of
head pose and eye gaze may be less preferred, because the
combination does not provide much extra information as
compared to the use of eye gaze alone or head pose alone.
Accordingly, the system may use the hierarchy of modal
input preferences to select modal inputs that provide con-
trasting information rather than generally duplicative infor-
mation. In some implementations, the hierarchy is to use
head pose and voice as the primary modal inputs, followed
by eye gaze and gesture.

Accordingly, as described further herein, based on mul-
timodal inputs, the system can calculate a confidence score
for various objects in the user’s environment that each such
object is the target object. The system can select, as the
target object, the particular object in the environment that
has the highest confidence score.

Example Intent Estimation

FIG. 12 shows a block diagram of an overview of
intent-based virtual avatar rendering based on an object of
interest. Intent based rendering a virtual avatar can depend
on a user’s pose in a virtual environment. The block diagram
may be implemented by the intent mapping system 694
described with reference to FIG. 6B. In some implementa-
tions, the user’s pose may be determined by using a wear-
able system with an outward-facing system and/or an
inward-facing imaging system (e.g., for eye gaze) or IMUs,
similar to the wearable system shown in FIGS. 2-4, for
example. The user’s pose data may be further divided into
components such as body pose and eye gaze in blocks 1250
and 1260 respectively. In block 1270, the user’s body pose
and eye gaze data may be used to identify objects of interest
the user may interact with in the virtual environment. A
virtual avatar of the user may then be rendered to reflect the
user’s interaction event with the identified object of interest
in block 1280.

Specific implementations of intent based rendering may
rely on determining the user’s focus point or item of interest.
FIGS. 13A through 13D illustrate examples for determining
an item of interest where the item of interest is shared
between two users. FIG. 13A begins by illustrating how
virtual objects and avatars may be placed in the virtual
environments. User A 1310 and User B 1360 are placed in
their own local virtual environments 1300 and 1350. User A
1310 may see a virtual triangle 1320, a virtual square 1330,
and User 1360°s remote avatar B 1340 in local virtual
environment 1300. User B 1360 may also see virtual triangle
1320, virtual square 1330, and user A 1310’s remote avatar
A 1370 in local virtual environment 1350. However, the
position and orientation of the virtual objects and remote
avatars may be unique to each user. As an example, in FIG.
13A, the virtual triangle 1320 and virtual square 1330 appear
to the left of user A 1310 in the local environment 1300.
Meanwhile, the virtual square 1330 is to right of user B 1360
while the virtual triangle 1320 is in front of user B 1360 in
local virtual environment 1350. Additionally, while remote
avatar 1340 faces towards user 1310 in virtual environment
1300, user A’s remote avatar 1370 faces away from user B
1360 in local virtual environment 1350.

FIG. 13B illustrates an example of how an item of interest
can be identified once virtual objects or virtual avatars are
placed throughout a virtual environment. Objects in the
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virtual environment can be marked as potential items of
interest. In some implementations, a vector may project
from the user towards each potential item of interest. In FIG.
13B, a virtual triangle 1320, a virtual square 1330, and a
remote avatar 1340 may all be identified as potential items
of interest. The virtual triangle 1320, virtual square 1330,
and remote avatar 1340 may all be represented by a corre-
sponding vector 1302, 1304, and 1308 respectively. Each
corresponding vector may then be compared to the user’s
current sight line vector 1306, which projects directly from
user 1310 towards the direction the user 1310 faces.
Although the corresponding vectors 1302, 1304, and 1308 in
FIG. 13B extend from user 1310 towards each correspond-
ing virtual object, different vectors or methods may be used
in other implementations. For example, the vector can point
to an object’s position in the virtual environment, which can
be its local origin. Where that origin points in relation to a
render model can vary depending on how the virtual object
is defined in the render model. For some objects, the vector
points towards the point closest to the user or the geometric
center of the object. For a large object (e.g., one with a size
greater than a threshold such as 3 ft., 6 ft., 8 ft., or more), it
is possible to create sub-assemblies that are each tagged with
their own local points of interest.

FIGS. 13C and 13D illustrate examples of determining an
item of interest among a plurality of potential items of
interest. An item of interest may be determined by calcu-
lating an interest value for all potential items of interest in
the virtual scene, or some subset of the potential items of
interest such as those within a predetermined distance from
the user’s avatar. The interest value of an object may be a
number representing how strongly the user is focused on the
object. In FIGS. 13C and 13D specifically, the interest value
for a potential item of interest is calculated by computing a
dot product between a vector representing the user’s line of
sight (V) and a vector representing the direction to the item
of interest (referred to as vector B in FIG. 13C). The
resulting scalar value can be multiplied by an interest weight
W for the item of interest. Thus, in this example implemen-
tation, the interest value is a weighted dot product: interest
value=(V-B)*W. The dot product is useful because the dot
product is largest in positive magnitude when two vectors
are parallel (zero angle between them), which indicates the
two vectors are pointing in the same direction (the user is
looking at the object). The dot product is zero when the two
vectors are perpendicular to each other (ninety degree angle
between them), which indicates the user is not looking
toward the object. Thus, the dot product tends to select items
of interest that are on or near the user’s line of sight. For
objects behind the user, the dot product is negative, there-
fore, the weighted dot product will tend to select items of
interest that are in front of the user.

The interest weight W of an object may be a number
representing how likely a user would want to focus on the
object. A larger interest weight is indicative of greater
interest in the object, and a smaller interest weight is
indicative of less interest in the object. In FIG. 13C, the
virtual triangle 1320, virtual square 1330, and remote avatar
1340 are potential items of interest. The interest value of
virtual triangle 1320 may be calculated by computing the dot
product between the user’s sight line vector 1306 and the
vector 1302. A similar calculation may be done for virtual
square 1330 and remote avatar 1340. Because the interest
weight of the potential items of interest in FIG. 13C are
equal (W=1.0 in this example), the potential item of interest
with the highest interest value is the one closest to the user’s
sight line vector 1306. Therefore, in the particular example
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shown in FIG. 13C, virtual square 1330 is the item of
interest, because the virtual square’s interest value (0.90) is
larger than the interest value for the virtual triangle (0.45) or
the remote avatar (0.65). In certain implementations, an
object directly in the user’s sight line vector may be the item
of interest by default.

While the objects in the example shown in FIG. 13C have
equal interest weights, other implementations may have
objects with different interest weights. FIG. 13D illustrates
an example of determining an item of interest where the
potential items of interest may have different interest
weights. The scene in FIG. 13D is the same as the scene in
FIG. 13C except that remote avatar 1340 has a higher
interest weight (W=1.5) than virtual triangle 1320 and
virtual square 1330 (which each have W=1.0). An object
with a higher interest weight may become the item of
interest even if it is further away from the sight line vector
1306 than other objects. Also, for objects that are along a
common direction from the user (so that their dot products
are all roughly equal), the object with the largest interest
weight will be selected as the item of interest. In FIG. 13D,
the remote avatar 1340 has a higher interest weight and
overall higher interest value (0.975), so it becomes the item
of interest even though virtual square 1330 is closer to sight
line vector 1306, but with a lower interest value (0.90).

The interest weight of a potential item of interest may
dynamically increase or decrease in response to events in the
virtual scene. For example, the interest weight of the remote
avatar 1340 in FIG. 13D may increase when remote avatar
1340 is speaking and may decrease when the remote avatar
1340 stops speaking to reflect that the user is likely more
interested in an avatar when it is currently speaking. In the
case where several users or avatars are speaking at once,
they may each be weighted equally, and the item of interest
can be the user or avatar that is nearest the user’s view
vector.

Objects which are being manipulated by a user may get
more weight. For example, if the user is playing a game of
virtual chess and her avatar opponent picks up the user’s
queen, then the queen can be weighted higher and become
more interesting, since the queen is currently of interest in
the chess game. Likewise, objects being pointed at, but not
directly manipulated by the user or an avatar, may get a
higher weight. In an example of a virtual birdwatching
experience, a user and an avatar may be looking at a
particular virtual bird, e.g., a Red-legged Kittiwake, which
is the current item of interest. If the avatar points at another
virtual bird in the virtual environment, e.g., a Whooping
Motmot, then the interest weight of the Whooping Motmot
can be increased sufficiently (e.g., compared to the interest
value of the Red-legged Kittiwake) so that the item of
interest changes from the Red-legged Kittiwake to the
Motmot. FIGS. 14A through 14F show examples of calcu-
lating interest values for each object in a virtual environment
to determine the item of interest, assuming each object has
equal interest weights. Although the specific example illus-
trated by FIGS. 26A through 26F uses dot product multi-
plication of vectors and equal interest weights, other imple-
mentations may use different methods (e.g., unequal interest
weights for the different objects). Further, additional or
fewer factors may be included in an interest value algorithm.
For example, distance to the virtual objects may be a factor
in calculating interest values, such that closer objects are
biased towards being the object of interest versus further
objects.

FIG. 14 A presents the initial scene of the example. In FIG.
14A, alocal user 1420, a remote avatar 1440, a large dragon
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1460, and a small dragon 1480 all occupy a unique position
in three-dimensional space. The positions of the objects are
represented by Cartesian coordinate values (X, y, Z),
although other coordinate systems can be used in other
implementations. For example, the position of the local user
is at (0, 2, 0), the position of the remote user B represented
by the remote avatar 1440 is at (4, 2, 6), and so forth.

FIG. 14B replicates the scene presented in FIG. 14A.
However, FIG. 14B also shows that each object from FIG.
14 A can be associated with a vector extending out from the
user to each object. For example, the vector from the user to
the remote avatar 1440 is Vector AB and has Cartesian
coordinate values (0.555, 0, 0.832). In this example, all of
the vectors are normalized to have length 1.0 (e.g., they are
unit vectors). A forward vector AF 1410 in FIG. 14B
represents the user’s line of sight. In this example, the
forward vector AF has coordinates (0, 0, 1).

FIGS. 14C through 14E illustrate an example of calcu-
lating the interest value of the three objects in the virtual
scene. The dot product of two vectors V1 and V2 having
coordinate values, respectively, (V1x, V1y, V1z) and (V2x,
V2y, V2z) is VI-V2=(VIx*V2x)+(V1Ly*V2)+(V1z*V2z).
FIG. 14C shows an example of calculating the interest value
of the remote avatar 1440. In FIG. 14C, the interest value of
remote avatar 1440 is the dot product of the forward vector
AF 1410 and the vector AB 1430, which points from the user
1420 to the remote avatar 1440. Applying the dot product
formula, the interest value of remote avatar 1440 relative to
the user is AF-AB=(0%0.555)+(0*0)+(1*0.832)=0.832. If an
interest weight W not equal to 1.0 were used for the remote
avatar, this value of the dot product would be multiplied be
W to arrive at the interest value.

FIGS. 14D and 14E shows examples of calculating the
interest values for the large dragon 1460 and small dragon
1480 using the same method as illustrated in FIG. 14C. As
shown in FIG. 14D, the interest value of the large dragon
1460 is the dot product of forward vector AF 1410 and
vector AC 1450, which equals 0.911. Similarly, as shown in
FIG. 14E, the interest value of the small dragon 1480 is the
dot product of forward vector AF 1410 and the vector AD
1470, which equals 0.408. FIG. 14F shows an example of
determining the item of interest by comparing the interest
values calculated in FIGS. 14C, 14D, and 14F. Because the
large dragon 1460 has the highest interest value (0.911), it
becomes the item of interest for the user 1420. Note that the
large dragon 1460 is the object closest to the user’s line of
sight AF and is accordingly selected as the item of interest
in this example (where the interest weights are all equal). As
objects move in the virtual environment, their coordinate
values change, and the corresponding dot products between
the user’s forward vector and the vectors to the objects
change. Thus, different objects in the virtual environment
can become the item of interest over time. As described
above, dynamically varying interest weights can be used for
each object, so that the item of interest may be an object that
is farther from the user’s line of sight than another object.

In some implementations, the interest weight W for an
object can depend at least partly on the distance between the
user and the object. For example, the interest weight may be
larger if the distance to the object is smaller, thereby
indicating that objects nearby the user will tend to be more
interesting to the user. Interest values may also represent
contextual factors in the environment. For example, in a
virtual game, a dangerous game element (e.g., a large
dragon) or a valuable item (e.g., a golden crown) may be
assigned a higher interest value than a more neutral or
passive game element (e.g., a rock or a non-threatening
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player), because the user will likely be more interested in
fighting the dangerous game element or finding the valuable
item than interacting with a neutral/passive game element.

Example Virtual Assistant

FIG. 15 illustrates a sample virtual scene that may be
displayed on a wearable device when the user enables a
virtual assistant. In this example, the virtual assistant is
represented by a robot 1510, but in other implementations
any other representation may be used (e.g., a jellyfish, a
monster, a paperclip, or any other cartoonish or anthropo-
morphic character). For purposes of discussion herein, a
virtual assistant that is presented in the form of a robot
avatar, and named Robot, is used. However, any other
character may be used in place of Robot, and any references
to a “robot” or Robot herein should be interpreted as
references to any non-user character avatar that represents a
virtual assistant. A virtual assistant includes a character
avatar, e.g., Robot, and the logic (e.g., algorithms, rules,
artificial intelligence, etc.) that determines behaviors of the
virtual assistant. Depending on the embodiment, virtual
assistants may take on different personalities and provide
different assistance to users. In one implementation that is
discussed herein, Robot is a sweet inquisitive character that
walks around, checks out what the user is doing, and reacts
accordingly. In some implementations, Robot (and/or other
virtual assistants) may be programmed with behaviors (and/
or develop behaviors, such as through Al updates as the
virtual assistant interacts within virtual environments) caus-
ing it to aid, showcase, react to, and/or respond to the user
in any imaginable manner.

Thus, in the example of FIG. 15, robot 1510 introduces
itself as a “friend” that stays near the user and engages in
interactions with the user (as well as other characters in the
virtual environment), such as based on what the user is
currently doing (or not doing). Personalities of virtual assis-
tants may be developed to mirror certain human personality
traits. For example, in some implementations, personality
traits of a virtual assistant may be based on a personality
assessment of one or more humans, such as humans with
personalities that may be desirable for a virtual assistant.
Through the use of actual personality assessment informa-
tion of humans, personality traits may be quantified more
accurately. Traits associated with a virtual assistant may
include those related to wants, needs, fears, etc., such as
traits that provide a virtual assistant with levels of creative-
ness, enthusiasm, energy, and fun-loving attitude. These
traits may be weighted differently, such as based on a
personality profile that is associated with a virtual assistant.
The personalities of virtual assistants may be stored in
and/or implemented using various rule sets, artificial intel-
ligence, and the like.

In some implementations, animation of a virtual assistant
is provided in a way that grounds the virtual assistant to the
user’s world, such as to create the appearance that the virtual
assistant is really in the user’s world, subject to physics of
that world. For example, shadows may be used to show
contact with the user’s ground plane. In some situations,
however, production of shadows under a character may be
difficult. In some embodiments, other special-effects and/or
audio may be used. For example, a special effect, such as a
light-rail behind a virtual assistant as it locomotes across a
surface may be added to show contact with the user’s ground
plane. Similarly, audio effects may be added to enhance the
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user’s perception of a virtual assistant, such as a movement
sound effect that is played when a virtual assistant rolls
across the ground.

A virtual assistant may be animated in an immersive
manner, e.g., there is no particular location where the virtual
assistant is restricted to, but rather the virtual assistant is
immersed into the virtual environment as more than just a
performer that is separated from the audience. As discussed
elsewhere herein, a virtual assistant’s behaviors may be
established and/or evolved (e.g., through Al induced behav-
ioral changes) to perform actions that make the user feel
appreciated for the actions they perform and to encourage
the user to go deeper into the richness of the virtual
experience. For example, if the user pulls out an object from
the menu, the virtual assistant may track the object to see
what the user does with it. If the user places a construction
block in a virtual scene, the virtual assistant may materialize
an object and communicate to the user that the user can snap
these objects together to build something (e.g., a rocket
ship). If the user then snaps these objects together, behavior
rules of the virtual assistant may initiate a celebration, such
as jumping up and down. Advantageously, these immersive
behaviors engage with what the user is interacting with and
what the user is doing, showing the user what else they can
do, and providing reactions to what the user chooses to do.
The behavioral rules may cause the virtual assistant to
respond to not just big or major actions performed by the
user, but also those that may be small, but meaningful, to the
user.

In some implementations, Robot may not always stay
near the user, but instead may stay within a particular area.
For example, the user could walk four miles away and the
robot could be configured to stay in the room they left it. In
some implementations, when Robot is within a detectable
range of an event of interested (e.g., based on artificial
intelligence analysis of the user’s interactions with the
virtual environment), Robot may be configured to move
toward the target of interest (depending on what it needs to
do with said target).

FIG. 16 is a block diagram of an avatar processing and
rendering system 1690 (which may be implemented in place
of the system 690 discussed above) in communication with
a wearable system 1610 that has activated a virtual assistant
functionality (e.g., which may be enabled by default in some
implementations). In this example, the wearable system
1610 provides various sensor data 1612 to the system 1690
and receives virtual environment GUI data 1614 from the
system 1690. The GUI data 1614 is usable by the wearable
system 1610 to generate and update a virtual environment
that is displayed to a user of the wearable system 1610, such
as to include interactions with a virtual assistant.

In the example of FIG. 16, the system 1690 includes a
virtual assistant system 1620 configured to execute rules for
operation of the virtual assistant, such as based on the sensor
data 1612, output from the intent mapping system 1630,
information about objects in a virtual scene (or objects that
could be in a virtual scene) such as may be obtained from
object data 1640, and/or other information that may be
useful in determining movements, interactions, and the like,
of the virtual assistant.

The virtual assistant is considered a non-user character
because it operates based on its own logic, rather than
directly based on inputs from a user. In the example of FIG.
16 and other examples discussed herein, the virtual assistant
system 1620 operates based on rules 1625, where rules
generally describe rules, criteria, algorithms, models,
scripts, code, processes, etc., that may be used to evaluate
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inputs and determine how the virtual assistant reacts. Dis-
cussion of rules herein does not limit the scope of imple-
mentation of virtual assistant logic, but only provides an
example implementation using rules. Other implementations
may also be realized using many types of software coding,
including implementations that use artificial intelligence,
machine learning, neural network, and/or other software that
dynamically updates the “rules” as the virtual assistant
interacts with users, characters, virtual objects, and the like
in virtual environments. Thus, rules that cause a virtual
assistant to perform a particular action in response to a
particular input from the wearable device may change over
time as the rules logic (e.g., artificial intelligence that
updates the rules) learns from its experiences.

The object data 1640 may include information regarding
objects that are currently in a virtual scene displayed to a
user, such as properties, positions, etc. of the virtual objects.
As the user and/or the virtual assistant interact with objects,
the object 1640 may be updated to indicate changes in
properties of the objects. In some implementations the
object data 1640 may include information regarding other
non-user characters that may be included in a virtual envi-
ronment. For example, characteristics, rules, and/or other
data regarding an astronaut character may be stored in the
object data 1640.

The intent mapping system 1630 is configured to process
various inputs from the wearable system 1610, such as the
sensor data 1612 that is provided to the system 1690 in
real-time as the wearable system 1610 interacts with a user.
The intent mapping system 1630 may access and process
information including speech tracking 1632, eye tracking
1634, totem tracking 1636, gesture/pose tracking 1638,
and/or any other information from the wearable system 1610
(or elsewhere) that may be useful in determining actions
and/or intent of the user (as well as other attributes of the
virtual environment). These example sensor inputs are dis-
cussed further above with reference to FIG. 6A, for example.

As noted above, the various inputs may be used to
determine an intent of the user, such as to determine how the
user is currently interacting with virtual objects in a virtual
environment and/or what the user wishes to do next within
the virtual environment. The intent mapping system 1630
may also calculate interest values for multiple objects within
a virtual environment (e.g., as discussed with reference to
FIGS. 13 and 14), which may be considered in determining
which virtual object the user intends to interact with. As
discussed further below, this intent information may be used
by the virtual assistant system 1620 to determine how the
virtual assistant should interact with the user. For example,
the intent of the user may dictate which virtual object the
virtual assistant recommends the user selects.

In the example of FIG. 16, the system 1690 provides the
wearable system 1610 with virtual environment GUI data
1614, which allows real-time updates to the immersed
AR/VR/MR experience of the user of the wearable system
1610 that includes real-time interactions with the virtual
assistant. In some implementations, the communications of
the sensor data 1612 and the virtual environment GUI data
1614 occur over a network 1660, which may include the
Internet, such as to interact with the system 1690 that is
remotely located, such as in the cloud. In some embodi-
ments, the network 1660 may include a local area network,
or the system 1690 may be local to the wearable system
1610. In any of these implementations, communications
between the avatar processing and rendering system 1690
and the wearable system 1610 are advantageously in sub-
stantially real-time, such that reactions, movements, sugges-
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tions, etc. of the virtual assistant are relevant to the current
and/or predicted actions of the user.

Animation and visual effects associated with virtual assis-
tants may be implemented using subsystems that break
down overall visuals into a series of actions or steps. For
example, this is representative in the robot’s holograms,
materialization, and joint overrides (e.g. as shown in FIG.
20A). Holograms may be data driven and make use of
storing textures (e.g., within ScriptableObjects), analogous
to traditional inventory systems. Materialization may spawn
a temporary object for the user to interact with. Through
creation of scalable systems a zero-gravity “temporary” state
of an existing object may be created without much impact on
other objects in different states. In some implementations,
object driven animation overrides redirect joints of the
virtual assistant to face the direction of interest, e.g., allows
Robot to visually track the user or what the user is holding.

In some implementations, materialization of an object by
a virtual assistant is only initiated after checking whether a
selected area is valid for materialization of the object.
Otherwise, the object could be materialized in the middle of
another character or object. One or more checks may be
performed prior to object materialization. For example, a
first check may be performed when the virtual assistant
arrives next to the object it’s interested in. If the area is clear
for the object to be materialized, it will be authorized to go
ahead and do so, but if the area is obstructed, the virtual
assistant will play an inspect animation instead. This may
provide the appearance that the virtual assistant had intended
to just go up and inspect the object the entire time, hiding the
fact that it just failed trying to perform a “user request” task.
Another example check may be performed when a materi-
alization shot is fired (e.g., an area is selected for material-
ization of an object). If the shot hits something in the scene
(e.g., because something moved into the line of fire), the
virtual assistant plays a disappointed animation and cancels
out of the task since it’s shot was blocked. This provides the
appearance that the virtual assistant recognizes what is
happening and can proactively adjust its behaviors, rather
than continuing to wait for the user to perform the action it
was requesting.

Example Virtual Assistant Interactivity

The virtual assistant, such as “Robot,” may be configured
to perform various movements, functions, interaction, etc.,
which may be responsive to the virtual environment (e.g.,
movements of the user, predicted intent of the user, charac-
teristics of virtual objects within the virtual environment,
etc.) and/or may be periodically or randomly initiated (e.g.,
a virtual assistant may periodically perform a maintenance
routine, regardless of what is occurring within the virtual
environment).

The rules identified in FIG. 17 are examples of rules that
may be implemented in a virtual assistant implementation.
In other implementations, additional or fewer rules may be
used, and/or the rules may be based on different criteria
and/or cause different behaviors of the virtual assistant.
Additionally, rules may be interrelated. For example, a first
rule may rely upon the outcome of another rule (or rules).
Similarly, a first rule may be triggered based on a particular
outcome of another rule. As noted above, discussion of
“rules” herein should be interpreted to cover any other type
of software and/or hardware programmable logic, such as
decision trees, algorithms, models, criteria, scripts, code,
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processes, flowcharts, pseudocode, etc., that may be used to
evaluate inputs and determine how the virtual assistant
reacts.

Hologram rules 1710 may include criteria for display of
holograms (or other 2D or 3D image(s)) in a virtual envi-
ronment. In some implementations, the impression of a
hologram may be provided through use of a stack of
waveguides to display two 2D stereoscopic images. In other
implementations, other hardware and/or software may be
used to generate the effect of a hologram. While the term
“hologram” generally refers to a three-dimensional image,
any implementations discussed herein with a hologram
should also be interpreted to include similar implementa-
tions where the hologram is replaced by other virtual image
(s), such as the stereoscopic 2D images noted above, that are
positioned to communicate information to the user.

In general, holograms generated by a virtual assistant may
be two—three frame animated images that are displayed
above the virtual assistant’s head to indicate its desires
and/or intent to the user and/or other characters. The holo-
grams may be projected from an emitter located on the top
of the virtual assistant’s head (or other location associated
with the virtual assistant), and may be triggered independent
of the animation that is currently playing.

Object rules 1720 may include criteria for creation, dis-
play, movement, manipulation, and/or removal of objects
within a virtual environment. In some implementations, the
objects rules 1720 indicate that the virtual assistant has the
ability to materialize objects via a virtual energy beam from
its hands, such that the object will float in place in front of
the virtual assistant. In some implementations, object mate-
rialization is performed in conjunction with holograms (e.g.,
the object materialization rules 1720 work in conjunction
with the hologram rules 1710). For example, if an object is
removed from the virtual assistant’s possession it may stay
in the scene permanently, otherwise the virtual assistant may
dematerialize the object when it determines that the object
has been ignored by the user. Intent estimations of the user,
such as is discussed above, may be used to determine how
much attention, if any, the user is giving to an object that is
materialized by the virtual assistant and, thus, may be an
input to object rules related to dematerialization of the
object.

Orientation rules 1730 may include criteria and instruc-
tions for how a virtual assistant rotates its head and/or body,
such as in relation to the user and/or other objects in a virtual
environment. In some implementations, the virtual assistant
has the ability to rotate its head to face toward a desired
target. A head rotation may include some body rotation also,
or may include only rotation of a head portion of the virtual
assistant. In some implementations, head rotation is limited
to a predetermined range in the X and Y axes. Such
implementations may, for example, create a more anthropo-
morphic realism of the head movements of the virtual
assistant.

Locomotion rules 1740 may include criteria and move-
ment instructions that initiate various movements of the
virtual assistant, such as into, through, and out of a virtual
scene. In some implementations, the virtual assistant moves
smoothly with an “omni-wheel,” which may be configured
to allow movement in any direction. In other embodiments,
a virtual assistant may be associated with other movement
vehicles, such as feet, roller-skates, a jet pack, a wagon, an
automobile, a flying vehicle, and/or any other movement
device.

In some implementations, the virtual assistant uses path-
finding on graphs generated by navigational meshes at
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runtime to navigate along the contours of the mesh. Example
navigational meshes and methods of use of navigational
meshes are included in copending PCT Application No.
PCT/US2019/026392, filed Apr. 8, 2019, titled “Avatar
Animation Using Markov Decision Process Policies,” which
is hereby incorporated by reference in its entirety and for all
purposes.

FIG. 17B illustrates one example of a navigational mesh
(a “navmesh”) 1780 showing traversable areas in an envi-
ronment. The traversable areas can be mapped out by a game
designer or in AR/MR by the wearable system using the
object recognizers 708 described with reference to FIG. 7,
for example. The navmesh can comprise polygons (e.g.,
triangles and squares in this example). The sequence of
polygons that include a starting position 1784« and a final
position 17845 (sometimes referred to as the destination or
goal) is the corridor and is shown via cross-hatch in FIG.
17B. The corridor can be identified using navigation path
techniques such as the A* or Dijkstra methods. The anima-
tion engine can move the avatar along the corridor from the
starting position 1784a to the final position 17845 by
steering the avatar towards the next visible corner (e.g.,
vertex of a polygon) of the corridor. The pathfinding tech-
nique generally does not need to have information about
how the avatar moves (e.g., walks, crawls, hops, slithers,
etc.) to determine the corridor in the navmesh.

A motion graph can be used to animate the avatar along
the path in the corridor. The motion graph provides a
selection of the animation clips to move the avatar from an
initial state (e.g., initial position and initial pose) to a
destination state (e.g., destination position and destination
pose).

As a physics based agent, the virtual assistant may utilize
customized parameters, such as max velocity and accelera-
tion, to undergo smooth movement with desired ease ins/
outs. Desired stopping distance can also be incorporated for
slowdowns when approaching targets.

In some implementations, a virtual assistant may be
associated with locomotion abilities (and/or restrictions) that
are different than those of other virtual assistants. For
example, a first virtual assistant may move in a virtual
environment by flying, while another virtual assistant moves
only through walking or running. Similarly, virtual assistants
may be associated with locomotion traits such as coordina-
tion, acceleration, posture, etc. that help personalize each
virtual assistant.

In one example implementation, the locomotion rules
1740 may allow the virtual assistant to get slightly ahead of
itself while accelerating, and in response, cause it to tilt
backward before leaning forward into the direction the
virtual assistant is moving in. This balancing effect may
provide a more realistic movement of the virtual assistant.
Similarly, the locomotion rules 1740 may cause the virtual
assistant to smoothly veer in a new direction while moving
forward, but does not typically lean/move from side to side
(except perhaps as part of title animations of the virtual
assistant). The locomotion rules 1740 may indicate various
speeds for the virtual assistant, such as a normal and fast
speed that may be similar to other non-character object
movements within a scene. For example, a normal and fast
speed of Robot may be similar to a walk and running speeds
of'a Tyrannosaurus Rex virtual assistant or other non-player
character.

In the example of FIG. 17, the locomotion rules 1740
include a few categories of rules, specifically: locomotion,
wanderer, idle, and falling, landing, and jumping. These
categories of locomotion rules are provided as examples
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only, and are not limiting of the locomotion mechanisms
available to other virtual assistants.

In this example, the wander locomotion rules allow the
virtual assistant to choose a random (or semi-random)
reachable location, move to it, and then choose another, such
as after a predetermined period of time has passed and/or the
user has performed a particular movement or action. In one
implementation, when the destination is reached, the wander
rules may include criteria to decide whether a further wander
is performed (e.g., to another destination) or whether the
virtual assistant should remain idle (e.g., see below) or
perform some other action.

In this example, the idle locomotion rules allow the virtual
assistant to remain idle for a predetermined period of time
and/or until some other input or rule dictates a move from
idleness. In some implementations, when the virtual assis-
tant reaches its intended destination (see above), the idle
locomotion rules initiate execution of one—two random idle
break animations (e.g., yawning, scratching head, fidgeting,
stretching, etc.) before determining whether to take another
idle break, to wander to another location, or to perform some
other action dictated by one or more other rules.

In this example, the falling, landing, jumping locomotion
rules allow the virtual assistant to perform special actions
that are influenced by virtual physics parameters, such as a
virtual gravity effect. For example, if the virtual assistant
falls off of a horizontal platform, the virtual assistant may
react based on a distance it is falling. For example, a short
distance may cause a fairly insubstantial reaction while a
large distance may cause a more dramatic reaction of the
virtual assistant. If the virtual assistant experiences a hard
landing from a fall, it may be animated to show it falling
over and then picking itself back up (and/or similar anima-
tions depending on the particular virtual assistant). This
virtual damage to the virtual assistant may motivate the user
to help the virtual assistant when a fall is possible (see, e.g.,
request help user interactions below).

In the example of FIG. 17, damage rules 1760 are used to
monitor and update a health or damage characteristic of the
virtual assistant that may be impacted by various activities
of' the virtual assistant, such as falling, even to a point where
the virtual assistant dies.

A hit reaction rule may include criteria indicating that
when a particular level of damage is inflicted on the virtual
assistant, its animation will be interrupted with a hit reaction
animation. This hit reaction animation may indicate to the
user that the virtual assistant has been damaged and an
amount of damage (e.g. either an exact numerical amount of
damage or some more general damage indicator, such as a
change in color). The hit reaction rules may further indicate
that, once the hit reaction animation is complete, the virtual
assistant proceeds with the activity that was interrupted, or
executes a wandering routine. In some implementations, the
locomotion animation of the virtual assistant may be
impacted based on a health level. For example, Robot may
let out gray smoke when its health level is below a certain
threshold.

An elimination (or “death”) rule may indicate when a
virtual assistant has received too much damage to continue
operation within the virtual environment. For example, an
elimination rule may initiate a death particle effect at the
location of the virtual assistant when a health level reaches
a predetermined minimum value, such as zero. In some
embodiments, the virtual assistant may be re-spawned based
on a request from the user and/or automatically immediately
or after a predetermined period of time.
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In the example of FIG. 17, interactions rules 1770 may
include various criteria and options dictating how a virtual
assistant interacts with both characters (e.g., other non-user
avatars) and users of the wearable system.

The example character interactions in the implementation
of FIG. 17 include character interactions and cloudy reac-
tions. Character greetings include rules for how the virtual
assistant interacts with other non-user characters, such as
Rex, Knights, Astronaut, and/or other Robots, which may
vary from character to character (or depending on the
interaction environment).

A character greeting may include a greeting animation
and a responsive greeting animation (e.g., that may be
provided if the other character provides an initial greeting
first). In some implementations, character greetings may be
customized for particular characters. For example, the vir-
tual assistant may have a custom handshake that it performs
with Rex that is different from a custom handshake that it
performs with Astronaut.

The cloudy reactions rules react to weather provided by a
Cloudy character and/or other weather simulating module of
the system. For example, Cloudy can target the virtual
assistant with its weather, such as lightning, rain, rainbows,
etc. and the cloudy reactions rules indicate an appropriate
action for the virtual assistant based at least on the received
weather.

The user interactions rules include criteria and responsive
actions that may be taken by the virtual assistant in con-
junction with actions performed by the user of the wearable
device.

A grab by user interaction rule may provide restrictions
and parameters for a user grabbing the virtual assistant. For
example, the virtual assistant may only be grabbed in
particular types of virtual scenes. The rules may indicate an
updated animation of the virtual object when in a grab mode,
such as to pause or change locomotion animations of the
virtual object, returning to a default locomotion animation
when the virtual assistant is released from the user’s grasp.

The looked at by user rules may indicate how the virtual
assistant reacts when the user has looked at the virtual object
for a predetermined time. As with the other rules, intent of
the user may be calculated and used as an input to determine
output of the rules. For example, an intent value of the
virtual assistant may be calculated in real time to indicate a
confidence level that the user is focusing attention on the
virtual assistant. In such an environment, a looked at by user
timer may only activate when the intent value is higher than
the intent values associated with other virtual objects in the
scene. Thus, if the user is focusing on an object that is near
the virtual assistant, for example, the looked at by user timer
may not activate. In some implementations, once the looked
at by user timer has reached a threshold, e.g., three, five, or
10 seconds, the virtual assistant will animate to indicate
recognition of the gaze of the user and turn toward the user
to greet them, perhaps with a wave or similar animation. In
some implementations, and perhaps based on the current
context of the virtual scene, when the user has looked at the
virtual assistant for a predetermined time period, a help
window may be shown, such as to provide the users with
information on actions that may be performed.

The watch user rules may allow the virtual assistant to
monitor movements and interactions of the user with other
virtual objects and predict intent of the user. Thus, this
predicted intent may be used to provide recommendations to
the user (discussed further below with reference to sugges-
tions rules 1750). In some implementations, the watch user
rules detect when the user has picked up an object and may
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initiate animation of the virtual assistant to show an
increased interest in what the user is doing with the object.
Additionally, the rules may indicate that the virtual assistant
follows the object as the user moves the object. The virtual
assistant may rotate and/or move its body and/or head to face
the object and to allow it to continue looking at the object.
In some implementations, the rules indicate that when an
object that has been interacted with by the user is no longer
interacted with by the user, the virtual assistant moves closer
to the virtual object and inspects it, which may cause further
movements and/or suggestions from the virtual assistant.

A request help interaction may include criteria for when
the virtual assistant requests assistance from the user. One of
the fastest ways to have two people build a strong bond is to
put them in a situation where they depend on one another for
safety (e.g., one’s life depends on the other) or to have a
common goal. In such situations, it doesn’t matter if they
come from different backgrounds, or speak different lan-
guages, the common goal allows them to build some type of
relationship. In a virtual world, the virtual assistant and the
user are in no real danger, but the virtual assistant may be
configured so that it can get hurt in certain situations, and
may need help from the user to minimize damage.

For example, if the virtual assistant would like to move
from a desk surface to a floor surface, such as to inspect an
object that the user has placed on the floor, the virtual
assistant may move towards a ledge of the desk and then
animate to request help from the user. For example, the
virtual assistant may animate a handwaving motion and ask
for the user to move the virtual assistant to the floor either
with graphical depictions of the request and/or an audible
request. The user may see this request for help and have
enough empathy to come to the aid of the virtual assistant.
If the user does respond to the virtual assistant’s request for
help, the virtual assistant has successfully elicited an emo-
tional response from the user that has led to an action that
can actually create or strengthen a relationship between the
virtual assistant and the human user.

The request help rules may further indicate how the
virtual assistant should react to interactions from the user
responsive to the help request, such as with a unique
animation showing gratitude when a user performs a
requested action. For example, a rule may indicate that if the
virtual assistant’s request for help is ignored by the user
(e.g., for a predetermined amount of time, such as three
seconds), the virtual assistant will jump off of the ledge
itself, which may then invoke the damage rules 1760, and
perhaps even the death rule. Alternatively, if the virtual
assistant is not able to move to a requested location by
jumping (e.g. the virtual assistant wants to move from the
floor up onto a desk), the request help rules may cause the
virtual assistant to return to wandering and to make a
subsequent request later (e.g., on a periodic basis included in
the request help rule). In some implementations, if the
virtual assistant is picked up in response to a request for
help, but is placed on the same or a non-requested surface,
the virtual assistant will animate to show that it is confused
or disappointed, and potentially indicating that the user
didn’t do exactly what it had hoped for. The virtual assistant
may then make the request again and/or perform a wander-
ing routine and then make the request at some future time.
In one implementation, if the virtual assistant is placed on a
desired platform, it will perform a celebratory/thankful
reaction indicating that the user did what the virtual assistant
desired.

In the example of FIG. 17, suggestions rules 1750 include
criteria indicating when the virtual assistant should provide
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suggestions. In this example, the suggestions include in-
scene suggestions, which are generally suggestions related
to objects that are currently in the virtual scene, as well as
menu suggestions, which are suggestions that may not
directly relate to objects currently in the virtual scene.

The in-scene suggestions may determine when the virtual
assistant is near, e.g., within a virtual field of view of, an
item of interest to the virtual assistant. The virtual assistant
may then provide a suggestion regarding the virtual object,
such as to encourage the user to perform a particular action.
Suggestions may be provided via a contextual animated
holographic display and/or via other video and/or audible
outputs. A virtual object that is the subject of a suggestion
may be highlighted in a visual manner, such as by a laser of
the virtual assistant targeting the virtual object. In some
implementations, the rules indicate that a happy animation is
performed by the virtual assistant when the user follows the
suggestion and/or a disappointed or sad animation is per-
formed when the user does not follow the suggestion.
Advantageously, such suggestions may educate the user on
actions that can be taken, such as to show the user in an
interactive and fun manner what can be done with various
objects. Several example in-scene suggestions are shown in
FIG. 17 and described briefly below:

Block snapping: the virtual assistant wants the user to
snap something to the block it has chosen, and materializes
a block for the user to use.

Thruster: the virtual assistant wants the user to activate
the thruster it has chosen, and materializes a metal block for
the user to use.

Launcher: The virtual assistant wants the user to place an
object into the launcher it has chosen, and materializes an
explosive block for the user to use.

Cloner: The virtual assistant wants the user to place an
object into the cloner it has chosen, and materializes dice for
the user to use.

Power Block: The virtual assistant wants the user to
activate an object with the power block it has chosen, and
materializes a fan for the user to use.

Portal: The virtual assistant wants the user to put an object
into the portal it has chosen, and materializes a metal ball for
the user to use.

Feed Creature: The virtual assistant wants the user to feed
another character (e.g., a particular T-Rex that the virtual
assistant has chosen), and materializes some food (e.g.,
cheese) for the user to use. The other character may be
configured to eat this on its own (e.g., perhaps as an easter
egg).

Music Block: The virtual assistant wants the user to cause
the music block it has chosen to make a sound, and mate-
rializes a bouncy ball for the user to use.

Freeze Object: The virtual assistant wants the user to
freeze another character that it has chosen (e.g., a Blue
Knight).

Clone Object: The virtual assistant wants the user to clone
another character it has chosen (e.g., a Red Knight).

FIG. 17 further illustrates several menu suggestions,
which are provided herein as examples of suggestions that
may be provided in certain implementations, and which are
not intended to be limiting to interactions possible in other
implementations. In some implementations, the menu sug-
gestion rules include criteria that analyze the amount of
objects of interest in a virtual scene and, if that amount is
below a certain threshold, will initiate a menu suggestion,
such as to suggest an object to be pulled from the menu.
Similar to the in-scene suggestions, the menu suggestions
may be provided in the form of a contextual animated
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holographic display and/or in any other visual and/or audible
output to the user. In response to the user adding a new
object responsive to a menu suggestion, the in-scene sug-
gestion rules may be triggered to consider the newly added
object. In some implementations, the virtual assistant per-
forms animations responsive to how the user responds to the
menu suggestions, such as a happy or sad animation depend-
ing on whether the user followed or didn’t follow the virtual
assistant’s suggestion. Because users may sometimes
encounter choice paralysis in a mixed reality environment,
the virtual assistant may advantageously be configured to,
every once in a while, run up to the menu and suggest an
action and/or walk up to the menu and will create a holo-
gram with a suggestion.

The menu suggestion rules may include characteristics of
a holographic display to be used for particular suggestions.
The supported objects may vary depending on various
criteria included in the menu suggestion rules, such as to
allow interactions with (and/or restrict interactions with) one
or more of block snapping, thruster, launcher, cloner, power
block, portal, creature feeding, music blocks, and/or other
virtual objects.

In some implementations, the virtual assistant will make
sounds to indicate its “mood.” For example, if the virtual
assistant is waiting by an object that it has suggested an
interaction with, it may make a small impatient noise to
encourage the user to look at him.

FIG. 18 illustrates an example view of a mixed reality
environment that includes a virtual assistant, specifically,
Robot. In the example of FIG. 18, virtual assistant interac-
tion rules are executed to cause the Robot to wave to the
user. In particular, in scene 1810 the virtual assistant 1802 is
seen in a static/idle position. However, based on application
of a user interaction rule, such as a looked at by user rule,
the virtual assistant 1802 is animated to wave at the user in
frame 1820. For example, the rule may indicate that after a
user has looked at the virtual assistant for a predetermined
period of time (e.g., an intent value associated with the
virtual assistant has been higher than intent values for other
virtual objects for the predetermined period of time), the
virtual assistant executes a wave animation. As noted else-
where, in other implementations the virtual assistant may
take on different forms and/or the rules and/or animations
performed by the virtual assistant may vary.

In some implementations, the virtual assistant is pro-
grammed with actions that attempt to get the user’s attention
when the virtual assistant is out of view of the user. In the
world of VR/AR/MR, the user control’s where they are
looking in the virtual world. Thus, a virtual assistant may be
positioned out of a user’s field of view and be unable to get
the attention of the user with an animated motion. Thus, the
virtual assistant may include, as part of its “user requests”
rules, audio cues that attempt to get the user’s attention and
cause the user to bring the virtual assistant into the user’s
field of view. Additionally, these rules may indicate that even
when the virtual assistant is within the field of view of the
user, the virtual assistant waits for the user to look directly
at the virtual assistant before performing the rest of its “user
request.” These attention-related rules reduce issues associ-
ated with the user finding the virtual assistant too late, such
as to only catch the end of a “user request,” and not having
enough time to perform the request before the virtual
assistant gets bored (e.g., if the user’s attention, for example
through a detected gaze vector, is not directed towards the
robot within a threshold period of time, the robot may
change to the next priority animation) and wanders off.
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FIGS. 19A and 19B includes several frames 1910-1970 of
a virtual environment wherein a virtual assistant providing a
suggestion to the user. In this particular example, the virtual
assistant 1802 receives instructions from an avatar process-
ing and rendering system 1690, such as based on application
of virtual assistant rules. As shown in frame 1910, the virtual
assistant 1802 is standing on a surface (e.g., a floor in the
real-world environment of the user) and characteristics of
the virtual environment are being processed by the virtual
assistant rules. In this example, a user interaction rule has
triggered the virtual assistant 1802 to provide a suggestion
to the user via a hologram. Thus, virtual assistant 1802 in
frame 1910 is shown with a hologram projector. Next, at
frame 1920, the virtual assistant 1802 begins projecting a
hologram 1922 near a cloner object 1924. At frame 1930, the
hologram animation continues and at frame 1940 an object
(e.g., a cheeseburger in this example) eventually material-
izes. The virtual assistant 1802 also begins to display
holographic suggestion details 1942, which in this example
is an animation showing placement of an object (a sphere)
into a cloning block, as shown in frames 1930 and 1940. In
frame 1950, the virtual assistant 1802 animates the sug-
gested action for the user. At frame 1960, the user has
selected the cheeseburger object 1962 and begins moving
the cheeseburger object 1962 towards the cloner object 1924
in frame 1970. As shown in frame 1980, the cloner object
1924 has performed a cloning action, creating multiple
cheeseburger objects from the cheeseburger object 1962 that
the user placed in the cloner object 1924 responsive to
suggestion of virtual assistant 1802. In some implementa-
tions, the suggestion rules would cause the virtual assistant
1802 to perform an animation and/or sound indicating
whether the virtual assistant is pleased, or unhappy, with
how the user performed the suggestion.

FIGS. 20A and 20B illustrate several frames 2010-2060
of an example mixed reality environment where a virtual
assistant requests help from a user to be moved down from
a ledge. In this example, at frame 2010, the virtual assistant
1802 is positioned on a desk surface near a ledge 2012,
which the virtual assistant 1802 looks over with trepidation.
The virtual assistant 1802 may desire to move to a lower
surface, such as the floor, to interact with an object there
and/or to provide a suggestion to the user regarding an object
there, for example. Because the virtual assistant 1802 does
not wish to receive damage from a fall, which possibly could
result in death of the virtual assistant, a suggestion rule
triggers and the virtual assistant requests help from the user.
Frames 2020, 2030, 2040 illustrate an example holographic
suggestion provided by the virtual assistant 1802 to indicate
that the virtual assistant wishes for the user to move the
virtual assistant down to a lower surface. In this example, the
holographic suggestion includes an animation showing a
request for the user to pick up the virtual assistant (holo-
graph 2022A), to lower the virtual assistant (holograph
2022B), and to place the virtual assistant on a lower hori-
zontal surface (holograph 2022C). Depending on the par-
ticular help suggestion rules associated with the virtual
assistant, the animation may be repeated multiple times.
Similarly, the virtual assistant may be configured to take
action on its own if the user does not interact with the virtual
assistant within a predetermined time, or may be configured
to wait and request assistance at a later time. In the example
of FIG. 20, at frames 2050 and 2060, the virtual assistant is
shown jumping from the ledge to the lower horizontal
surface, after the request for help rule determined that the
user had not provided the help and the virtual assistant
decides to jump on its own. The virtual assistant may take on
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damage and/or die as a result of the landing, and may be
animated to illustrate such damage upon its landing.
Multiple Virtual Assistants and Cool Down

In some implementations, multiple virtual assistants may
be included in a virtual environment. Additionally, other
non-user characters may be included in a virtual environ-
ment and may interact with the one or more virtual assis-
tants. In some implementations, multiple virtual assistants
will all operate on the same or similar rules, such that each
of multiple virtual assistants will watch and move at the
same time. In other implementations, virtual assistants may
have customized rules and/or rules may be modified over
time for particular virtual assistant based on artificial intel-
ligence or neural network learning that implements some
variations in behaviors, even if the virtual assistants each
began with common behavioral rules.

In some implementations, rules for interactions may take
into account the presence of other characters. A cool down
period may be implemented to potentially reduce concurrent
movements of multiple virtual assistants. For example, a
cool down rule may dictate that when the virtual assistant is
looking at an object it will ignore all other objects until it is
done looking at the object, plus some cool down time period,
such as one second, three seconds, or five seconds, for
example, before the virtual assistant wanders or looks at
another object that the user is then interacting with. Cool
downs may be performed after each suggestion is provided
to the user and/or after each category of suggestions. If cool
downs are limited to categories of suggestions, there would
not be a cool down between consecutive suggestions of a
same type (e.g., between consecutive clone suggestions) to
make sure it doesn’t request the same thing multiple times
in a row. In some embodiments, there may be a cool down
between consecutive suggestions of the same type (e.g.,
where each suggestion type may be associated with multiple
individual suggestions) in order to provide a greater variety
of suggestions to the user.

In one implementation, a “user request” Al task has a
cooldown range to limit how often it fires, which may be in
the range of 20-40 seconds, for example. Each possible
request (and/or category of request) may also have its own
cooldown as well. In this example, if the virtual assistant
requested the user to snap some blocks together 15 seconds
ago, the next request will be something different because
“snapping some blocks together” will currently be on
cooldown, while other request categories might not be.

In some implementations, the number of concurrent sug-
gestions in a scene is limited, such as to 2 or 3 concurrent
suggestions from all of the virtual assistants in a scene. Thus,
in this example, if 10 Robots are in a scene, the user isn’t
overwhelmed with ten concurrent suggestions, but only to
the limited 2 or 3 suggestions indicated in the virtual
assistant rules. For example, a “bot manager” script may be
used to track how many virtual assistants are currently
requesting something from the user. Before a virtual assis-
tant can request something from the user, the virtual assistant
may check with the bot manager to see if it was allowed to
make a request at that time. If not, it would execute the next
highest priority Al task.

In some implementations, virtual assistants that reach
their targets (e.g., the object associated with a suggestion)
first are allowed to provide their suggestion until the maxi-
mum number of concurrent suggestions is reached, while the
other virtual assistants wander around or watch the interac-
tions of the user. The virtual assistants that have their
mission interrupted (because the maximum number of mis-
sions by other virtual assistants is reached) may end their
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mission and be assigned a new mission (the same or a
different mission than before) once the number of ongoing
missions is reduced (e.g., by a mission being completed).
Missions

In some implementations, each virtual assistant may be
associated with a mission, which is generally one or more
tasks (or objectives) that are configured to achieve a par-
ticular goal. For example, the mission of a virtual assistant
may be to have the user interact with a particular object, such
as an object that the user has not previously interacted with.
Thus, a virtual assistant may have a mission to suggest a user
interaction with a particular object, such as an action block
that is in the scene. Accordingly, when the virtual assistant’s
cool down timer is free, the virtual assistant may notice the
block, move over to it, and initiate a suggestion to the user
for an interaction with the block.

In some implementations, a mission may include a pri-
oritized list of objectives that dictate what the virtual assis-
tant should “do” in response to particular events, such as
when the virtual assistant is within a particular distance of an
object or when the user performs certain actions. These
objectives (which may also be referred to as “sub-tasks™) in
the virtual assistant’s behavioral rules (e.g., a behavior tree)
may be extended to incorporate user responsiveness, such
that the virtual assistant’s desired execution of tasks are not
complete until the user completes an expected action or
“suggestion.” Thus, in some implementations the virtual
assistant may be both a character of agency and an instruc-
tional tool that extends the user’s understanding of the
experience.

In some implementations, a user is associated with a set
of missions, such as ten or more missions that are each
tasked to be completed by the user. In these implementa-
tions, a virtual assistant may be assigned a highest priority
mission or the virtual assistant may be assigned a random
mission of the remaining missions. If the maximum number
of concurrent missions are already in progress, the virtual
assistant may just wander until a mission is completed, and
then be assigned the next highest priority mission (or a
random mission in implementations where mission assign-
ments are randomized). Missions may include tasks that
train or educate the user.

Audio

In some implementations, the virtual assistant may be
configured to play sounds to the user via the wearable
system. For example, certain actions/animations of the vir-
tual assistant may be accompanied by audio output. Addi-
tionally, audio output may be provided in some instances
even when the virtual assistant is not performing an action/
animation. Sounds may be associated with actions such as
walking, running, turning, idling, falling, landing, cloudy
reactions, astronaut scan reaction, character interactions
(e.g., may be different for each character), hit impacts, death,
hologram generation, suggestion animations, user action
celebrations, ledge help request, request fulfilled, request
ignored, object of interested highlight indication, object
materialization, object release, user greeting, etc.

In some implementations, multiple sound layers may be
used, such as for body movements of a virtual assistant.
Isolation of the layers (e.g., using Wave Works Interactive
Sound Engine or “wWise”, an audio creation sound engine
by Audiokinect) allows more variety for mix possibilities.
Wwise gives extra variation and flexibility when optimizing
with wise recorder.

Sounds associated with the virtual assistant, such as with
particular actions or interactions of the virtual assistant may
be obtained from various sources. For example, a robot
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virtual assistant may have sounds including a vintage Mac
Plus computer from the 80s and recordings of organic
mechanical sounds that may increase the feeling of the robot
being a real object with “sci i robotic qualities. Organic
mechanical sounds may provide a more realistic feel and
help portray the virtual assistant (e.g., Robot) as a little guy
who has had some miles put on him.

In some implementations, a voice like sound effect may
be associated with a virtual assistant. The voice may be used,
for example, to help the virtual assistant get the user’s
attention and tell the story and purpose of the virtual
assistant’s actions.

In production of a virtual assistant, and it’s associated
sound effects, a sound library with sounds that may be
associated with virtual assistant actions may be used to
allow quick association of sounds with the virtual assistant
once design of the virtual assistant is prepared. Use of a
sound library allows quick addition of sounds from the
library and creation of the final mix. In some implementa-
tions, design teams (that are designing a virtual assistant)
need extra time for their part, and audio is typically added
after design is completed. Thus, use of a sound library by the
sound team reduces pressure that may be placed on the audio
team to quickly complete the audio for the virtual assistant
(that may already be behind schedule).

In some implementations, a virtual environment may
include multiple virtual assistants and/or instances of other
characters that have associated sounds. Thus, the system
may implement a mix pass that determines sounds and
volume of each sound to provide an appropriate balance of
sounds. For example, various scenarios (e.g., characters,
animations, interactions, etc.) may be associated with
parameters for mixing sounds within a virtual scene. In some
implementations, a spotlight may be used to help balance the
mix and/or to push the mix up for a specific animation (e.g.,
hero animations) and/or important vocal calls. In some
implementations, specific radiation properties of voices may
be considered within the mix as well.

Example Visual Effect Creation

When it comes to visual effects in video games, opacity
is a parameter that visual effects artists commonly adjust to
provide visual effects that are quick, spontaneous, and that
add character to the animated objects. In spatial computing,
however, the visual effects goal may shift from making the
effects “glowy” to making them opaque and clear to read.
Additionally, some spatial computing environments are not
able to handle transparency well—creating effects that may
go unnoticed because the user can see through them. Addi-
tionally, use of black color in spatial computing is difficult.
Thus, in some implementations these visual effects may be
imitated using brighter textures or “faking” the shadows.

In some implementations, timing of animations and visual
effects may be programmed with reference to other anima-
tions or visual effects. For example, at times when multiple
dependent effects are active, such as when the virtual
assistant is materializing an object, the timing and how long
each effect plays at a particular keyframe may be adjusted
using a visual animation and timeline interface that may be
operated by an animator, rather than a programmer.

Sometimes effects will not be visible through one
monocle or look drastically different than what you see in
engine. This is where enabling instancing comes to play.
Instancing allows the shader to create an instance of the
parameter internally and use the same, for example, texture
on each object. This helps optimizing the computing
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required to draw the shader in the spatial computing since
overdraws are wanted. In some implementations, if shader
graphs are used like Amplify Shader Editor, then there is a
parameter called Force Enable Instancing which when
enabled, fixes the above issue. Also, if there are shaders
getting changed at runtime, instancing may be important to
achieve smoother transitions (e.g., because the values of the
parameters may be decided at runtime via scripts or shader
itself).

Keeping every particle effect optimized may also be
useful for the performance. For example, if there are mul-
tiple virtual assistants in a scene, the frames-per-second
(“fps”) may be lowered to a level that is not acceptable. In
such a situation, fps may be increased by better management
of effects on the character. For example, making use of
meshes for most of the effects limits impact of these heavy
effects. A mesh renderer (in particle system) or a game object
(in project) may make it easier for an effects engine and
reduces draw calls. Additionally, checking that the pivot is
at the center of mesh instead of origin in 3D packages like
Maya may be beneficial when working with world position
or object position related shaders. While using mesh ren-
derer in Unity for particle effects, changing the Renderer
Mode to local in particle renderer may optimize rendering.
Adding meshes to particle effect, if shaders are used, may
also optimize the effects. For example, controlling UV’s for
faking motion effects or Disintegration effect.

In some implementations, when scaling the whole effect
via scripts, a parent prefab may be normalized (e.g., param-
eter is 1 and other Transform parameters are zeroed out).
This may reduce the chance of effects being scaled weirdly,
which may create defects in other dependent effects also. For
example, in a particle system, the Scaling mode parameter
may be changed to Hierarchy so that all the dependent game
objects get scaled. For effects played once, setting Stop
Action to Destroy will clear it from the scene, avoiding the
memory to populate with unused effects. In some imple-
mentations, most of the effects that are generated using
shaders are more performance efficient than using particles.
Using flip-books inside of shaders for sprite-sheets may also
help support performance.

Example Implementations

The systems, methods, and devices described herein each
have several aspects, no single one of which is solely
responsible for its desirable attributes. Without limiting the
scope of this disclosure, several non-limiting features will
now be discussed briefly. The following paragraphs describe
various example implementations of the devices, systems,
and methods described herein. A system of one or more
computers can be configured to perform particular opera-
tions or actions by virtue of having software, firmware,
hardware, or a combination of them installed on the system
that in operation causes or cause the system to perform the
actions. One or more computer programs can be configured
to perform particular operations or actions by virtue of
including instructions that, when executed by data process-
ing apparatus, cause the apparatus to perform the actions.

In a 1st example, a system comprises a mixed reality
device, a hardware computer processor, and a non-transitory
computer readable medium having software instructions
stored thereon, wherein the software instructions executable
by the hardware computer processor to cause the computing
system to perform operations comprising: accessing virtual
environment data including information regarding a virtual
environment that is at least partially visible to a user through
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a field of view of the mixed reality device. The virtual
environment data may indicate a location within the virtual
environment of a virtual assistant executing logic configured
to determine movements and interactions of the virtual
assistant, location within the virtual environment of a virtual
object, and a headpose of the mixed reality device that
indicates an orientation and position of a user of the mixed
reality device. In some implementations, the logic associated
with the virtual assistant includes at least: one or more
locomotion rules that control movement of the virtual assis-
tant towards the user, one or more interest rules indicating
that, in response to the user picking up the virtual object, the
virtual assistant moves to at least within a predetermined
minimum distance of the user in the virtual environment and
a gaze of the virtual assistant turns towards the virtual
object, one or more suggestion rules that, in response to an
idle time of the user exceeding an idle threshold, causes the
virtual assistant to suggest an action to the user, and a help
rule that, in response to the virtual assistant determining that
a move to a target area of the virtual environment would
inflict damage on the virtual assistant, causes the virtual
assistant to request help from the user. In some embodi-
ments, the operations further include accessing sensor data
from the wearable device, the sensor data including at least
one of speech tracking, eye tracking, totem tracking, or
gesture/pose tracking, executing the logic based at least on
the sensor data and the virtual environment data, and out-
putting to the mixed reality device updates to the virtual
environment for display to the user, wherein representation
of the virtual assistant in the virtual environment is updated
in real-time responsive to execution of the logic.

In a 2nd example, the system of example 1, wherein the
virtual assistant is depicted in the virtual environment as a
robot.

In a 3rd example, the system of any of examples 1-2,
further comprising an intent determination component con-
figured to determine intent of the user.

In a 4th example, the system of example 3, wherein intent
of the user comprises a first intent value associated with a
first virtual object, the first intent value based at least on a
gaze direction of the user with reference to position of the
first virtual object in the virtual environment.

In a 5th example, the system of example 4, wherein intent
of the user comprises a second intent value associated with
a second virtual object, the second intent value based at least
on the gaze direction of the user with reference to position
of the second virtual object in the virtual environment.

In a 6th example, the system of example 5, wherein the
first intent value is lower than the second intent value,
indicating that the user is more focused on the first virtual
object.

In a 7th example, the system of any of examples 1-6,
wherein the rules include one or more criteria, algorithm,
model, script, pseudocode, or process.

In a 8th example, the system of any of examples 1-7,
wherein the virtual assistant is configured to determine a
mission of the user based on examination of the virtual
object picked up by the user.

In a 9th example, the system of any of examples 1-8,
wherein at least some of the rules are associated with sounds
that are played on the mixed reality device responsive to
satisfaction of the corresponding rule.

In a 10th example, the system of example any of examples
1-9, wherein the logic further includes a wave rule that, in
response to the user not looking at the virtual assistant for a
predetermined time, causes the virtual assistant to wave to
the user.
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In a 11th example, the system of example any of examples
1-10, wherein the move to the target area of the virtual
environment includes a drop off of a ledge of a real world
object onto which the virtual assistant is positioned.

In a 12th example, the system of example any of examples
1-11, wherein the request for help from the user comprises
displaying a hologram with an animated overview of the
requested movement.

In a 13th example, the system of example any of examples
1-12, wherein the help rule indicates that, if the user has not
helped the virtual assistant within a predetermined time from
when help was requested, the virtual assistant initiates a
locomotion action intended to move the virtual assistant to
the target area.

In a 14th example, the system of example 13, wherein the
locomotion action comprises jumping from the ledge of a
surface.

In a 15th example, the system of example any of examples
1-14, wherein the logic further includes a damage rule
configured to track damage to the virtual assistant and, when
the damage reaches a threshold amount, initiate an elimina-
tion action associated with death of the virtual assistant.

In a 16th example, The system any of examples 1-15,
wherein the interest rules further indicate that the gaze
continues at least a first predetermined time after the virtual
object is no longer held by the user.

In a 17th example, the system of example any of examples
1-16, wherein the user is associated with a plurality of
missions that the virtual assistant is configured to assist with.

In a 18th example, the system of example 17, wherein the
plurality of missions are assigned to one or more virtual
assistants based on priorities of the missions.

In a 19th example, the system of example 17, wherein the
plurality of missions are assigned to one or more virtual
assistants randomly.

In a 20th example, the system of example 17, wherein a
quantity of the missions that are assignable to the one or
more virtual assistants is limited to a first quantity.

In a 21st example, the system of any of examples 1-20,
wherein the virtual environment includes a second virtual
assistant executing second logic configured to manage
movements and interactions of the second virtual assistant.

In a 22nd example, the system of any of examples 1-21,
wherein the action suggested to the user comprises a sug-
gestion to select a menu item.

In a 23rd example, the system of any of examples 1-22,
wherein the action suggested to the user comprises a sug-
gestion to interact with a virtual object.

In a 24th example, a system comprises a mixed reality
device, a hardware computer processor, and a non-transitory
computer readable medium having software instructions
stored thereon, wherein the software instructions executable
by the hardware computer processor to cause the computing
system to perform operations comprising: accessing virtual
environment data including information regarding a virtual
environment that is at least partially displayed by the mixed
reality device. The virtual environment data may indicate a
location within the virtual environment of a virtual assistant
executing logic configured to determine movements and
interactions of the virtual assistant, location within the
virtual environment of a virtual object, and a location within
the virtual environment of a user of the mixed reality device.
In some implementations, the logic associated with the
virtual assistant includes at least: one or more locomotion
rules that control movement of the virtual assistant towards
the user, one or more interest rules indicating that, in
response to the user picking up the virtual object, the virtual
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assistant moves to at least within a predetermined minimum
distance of the user in the virtual environment and a gaze of
the virtual assistant turns towards the virtual object, one or
more suggestion rules that, in response to an idle time of the
user exceeding an idle threshold, causes the virtual assistant
to suggest an action to the user, and a help rule that, in
response to the virtual assistant determining that a move to
a target area of the virtual environment would inflict damage
on the virtual assistant, causes the virtual assistant to request
help from the user. In some embodiments, the operations
further include accessing sensor data from the wearable
device, the sensor data including at least one of speech
tracking, eye tracking, totem tracking, or gesture/pose track-
ing, executing the logic based at least on the sensor data and
the virtual environment data, and outputting to the mixed
reality device updates to the virtual environment for display
to the user, wherein representation of the virtual assistant in
the virtual environment is updated in real-time responsive to
execution of the logic.

As noted above, implementations of the described
examples provided above may include hardware, a method
or process, and/or computer software on a computer-acces-
sible medium.

ADDITIONAL CONSIDERATIONS

Each of the processes, methods, and algorithms described
herein and/or depicted in the attached figures may be
embodied in, and fully or partially automated by, code
modules executed by one or more physical computing
systems, hardware computer processors, application-spe-
cific circuitry, and/or electronic hardware configured to
execute specific and particular computer instructions. For
example, computing systems can include general purpose
computers (e.g., servers) programmed with specific com-
puter instructions or special purpose computers, special
purpose circuitry, and so forth. A code module may be
compiled and linked into an executable program, installed in
a dynamic link library, or may be written in an interpreted
programming language. In some implementations, particular
operations and methods may be performed by circuitry that
is specific to a given function.

Further, certain implementations of the functionality of
the present disclosure are sufficiently mathematically, com-
putationally, or technically complex that application-specific
hardware or one or more physical computing devices (uti-
lizing appropriate specialized executable instructions) may
be necessary to perform the functionality, for example, due
to the volume or complexity of the calculations involved or
to provide results substantially in real-time. For example,
animations or video may include many frames, with each
frame having millions of pixels, and specifically pro-
grammed computer hardware is necessary to process the
video data to provide a desired image processing task or
application in a commercially reasonable amount of time.

Code modules or any type of data may be stored on any
type of non-transitory computer-readable medium, such as
physical computer storage including hard drives, solid state
memory, random access memory (RAM), read only memory
(ROM), optical disc, volatile or non-volatile storage, com-
binations of the same and/or the like. The methods and
modules (or data) may also be transmitted as generated data
signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable
transmission mediums, including wireless-based and wired/
cable-based mediums, and may take a variety of forms (e.g.,
as part of a single or multiplexed analog signal, or as
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multiple discrete digital packets or frames). The results of
the disclosed processes or process steps may be stored,
persistently or otherwise, in any type of non-transitory,
tangible computer storage or may be communicated via a
computer-readable transmission medium.

Any processes, blocks, states, steps, or functionalities in
flow diagrams described herein and/or depicted in the
attached figures should be understood as potentially repre-
senting code modules, segments, or portions of code which
include one or more executable instructions for implement-
ing specific functions (e.g., logical or arithmetical) or steps
in the process. The various processes, blocks, states, steps,
or functionalities can be combined, rearranged, added to,
deleted from, modified, or otherwise changed from the
illustrative examples provided herein. In some implementa-
tions, additional or different computing systems or code
modules may perform some or all of the functionalities
described herein. The methods and processes described
herein are also not limited to any particular sequence, and
the blocks, steps, or states relating thereto can be performed
in other sequences that are appropriate, for example, in
serial, in parallel, or in some other manner. Tasks or events
may be added to or removed from the disclosed example
implementations. Moreover, the separation of various sys-
tem components in the implementations described herein is
for illustrative purposes and should not be understood as
requiring such separation in all implementations. It should
be understood that the described program components,
methods, and systems can generally be integrated together in
a single computer product or packaged into multiple com-
puter products. Many implementation variations are pos-
sible.

The processes, methods, and systems may be imple-
mented in a network (or distributed) computing environ-
ment. Network environments include enterprise-wide com-
puter networks, intranets, local area networks (LAN), wide
area networks (WAN), personal area networks (PAN), cloud
computing networks, crowd-sourced computing networks,
the Internet, and the World Wide Web. The network may be
a wired or a wireless network or any other type of commu-
nication network.

The systems and methods of the disclosure each have
several innovative aspects, no single one of which is solely
responsible or required for the desirable attributes disclosed
herein. The various features and processes described above
may be used independently of one another, or may be
combined in various ways. All possible combinations and
subcombinations are intended to fall within the scope of this
disclosure. Various modifications to the implementations
described in this disclosure may be readily apparent to those
skilled in the art, and the generic principles defined herein
may be applied to other implementations without departing
from the spirit or scope of this disclosure. Thus, the claims
are not intended to be limited to the implementations shown
herein, but are to be accorded the widest scope consistent
with this disclosure, the principles and the novel features
disclosed herein.

Certain features that are described in this specification in
the context of separate implementations also can be imple-
mented in combination in a single implementation. Con-
versely, various features that are described in the context of
a single implementation also can be implemented in multiple
implementations separately or in any suitable subcombina-
tion. Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination can
in some cases be excised from the combination, and the
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claimed combination may be directed to a subcombination
or variation of a subcombination. No single feature or group
of features is necessary or indispensable to each and every
implementation.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain implementations include, while other implementa-
tions do not include, certain features, elements and/or steps.
Thus, such conditional language is not generally intended to
imply that features, elements and/or steps are in any way
required for one or more implementations or that one or
more implementations necessarily include logic for decid-
ing, with or without author input or prompting, whether
these features, elements and/or steps are included or are to
be performed in any particular implementation. The terms
“comprising,” “including,” “having,” and the like are syn-
onymous and are used inclusively, in an open-ended fashion,
and do not exclude additional elements, features, acts,
operations, and so forth. Also, the term “or” is used in its
inclusive sense (and not in its exclusive sense) so that when
used, for example, to connect a list of elements, the term
“or” means one, some, or all of the elements in the list. In
addition, the articles “a,” “an,” and “the” as used in this
application and the appended claims are to be construed to
mean “one or more” or “at least one” unless specified
otherwise.

As used herein, a phrase referring to “at least one of” a list
of items refers to any combination of those items, including
single members. As an example, “at least one of: A, B, or C”
is intended to cover: A, B, C, A and B, A and C, B and C,
and A, B, and C. Conjunctive language such as the phrase “at
least one of X, Y and Z,” unless specifically stated otherwise,
is otherwise understood with the context as used in general
to convey that an item, term, etc. may be at least one of X,
Y or Z. Thus, such conjunctive language is not generally
intended to imply that certain implementations require at
least one of X, at least one of Y and at least one of Z to each
be present.

Similarly, while operations may be depicted in the draw-
ings in a particular order, it is to be recognized that such
operations need not be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. Further, the
drawings may schematically depict one more example pro-
cesses in the form of a flowchart. However, other operations
that are not depicted can be incorporated in the example
methods and processes that are schematically illustrated. For
example, one or more additional operations can be per-
formed before, after, simultaneously, or between any of the
illustrated operations. Additionally, the operations may be
rearranged or reordered in other implementations. In certain
circumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the implementations described above should
not be understood as requiring such separation in all imple-
mentations, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products. Additionally, other implemen-
tations are within the scope of the following claims. In some
cases, the actions recited in the claims can be performed in
a different order and still achieve desirable results.

What is claimed is:

1. A mixed reality device comprising:

a hardware computer processor; and
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a non-transitory computer readable medium storing soft-
ware instructions executable by the hardware computer
processor to cause the mixed reality device to perform
operations comprising:

accessing virtual environment data including information
regarding a virtual environment that is at least partially
visible to a user through a field of view of the mixed
reality device, wherein the virtual environment data
indicates properties of:

a virtual object within the virtual environment; and

a virtual assistant within the virtual environment; and
executing one or more of:

an interest rule indicating that, in response to the user
picking up the virtual object, the virtual assistant moves
to at least within a predetermined minimum distance of
the user in the virtual environment and a gaze of the
virtual assistant turns towards the virtual object; or

a suggestion rule that, in response to an idle time of the
user exceeding an idle threshold, causes the virtual
assistant to suggest an action to the user.

2. The mixed reality device of claim 1, wherein the
software instructions are further configured to perform
operations comprising:

accessing sensor data including at least one of speech
tracking, eye tracking, totem tracking, or gesture/pose
tracking, wherein the one or more of the interest rule or
the suggestion rule are based on the sensor data and the
virtual environment data; and

updating a representation of the virtual assistant in the
virtual environment in real-time responsive to the one
or more of the interest rule or the suggestion rule.

3. The mixed reality device of claim 1, wherein the virtual

assistant is depicted in the virtual environment as a robot.

4. The mixed reality device of claim 1, wherein the
software instructions are further configured to perform
operations comprising:

executing an intent determination component configured
to determine intent of the user.

5. The mixed reality device of claim 4, wherein intent of
the user comprises a first intent value associated with the
virtual object, the first intent value based at least on a gaze
direction of the user with reference to a position of the
virtual object in the virtual environment.

6. The mixed reality device of claim 5, wherein intent of
the user comprises a second intent value associated with a
second virtual object, the second intent value based at least
on the gaze direction of the user with reference to a position
of the second virtual object in the virtual environment.

7. The mixed reality device of claim 6, wherein the first
intent value is lower than the second intent value, indicating
that the user is more focused on the virtual object.

8. The mixed reality device of claim 1, wherein the rules
include one or more criteria, algorithm, model, script,
pseudocode, or process.

9. The mixed reality device of claim 1, wherein the virtual
assistant is configured to determine a mission of the user
based on examination of the virtual object.

10. The mixed reality device of claim 1, wherein at least
some of the rules are associated with sounds that are played
on the mixed reality device responsive to satisfaction of the
corresponding rule.
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11. The mixed reality device of claim 1, wherein the
software instructions are further configured to perform
operations comprising:

executing a wave rule that, in response to the user not

looking at the virtual assistant for a predetermined
time, causes the virtual assistant to wave to the user.

12. The mixed reality device of claim 1, wherein the
software instructions are further configured to perform
operations comprising:

executing a damage rule configured to track damage to the

virtual assistant and, when the damage reaches a
threshold amount, initiate an elimination action asso-
ciated with death of the virtual assistant.

13. The mixed reality device of claim 1, wherein the user
is associated with a plurality of missions that the virtual
assistant is configured to assist with.

14. The mixed reality device of claim 13, wherein the
plurality of missions are assigned to one or more virtual
assistants based on priorities of the missions.

15. The mixed reality device of claim 1, wherein the
virtual environment includes a second virtual assistant
executing second logic configured to manage movements
and interactions of the second virtual assistant.

16. A computerized method comprising:

accessing virtual environment data including information

regarding a virtual environment that is at least partially
visible to a user through a field of view of a mixed
reality device, wherein the virtual environment data
indicates properties of:

a virtual object; and

a virtual assistant; and executing one or more of:

an interest rule indicating that, in response to the user

picking up the virtual object, the virtual assistant moves
to at least within a predetermined minimum distance of
the user in the virtual environment and a gaze of the
virtual assistant turns towards the virtual object; or

a suggestion rule that, in response to an idle time of the

user exceeding an idle threshold, causes the virtual
assistant to suggest an action to the user.

17. The computerized method of claim 16, the method
further comprising:

accessing sensor data including at least one of speech

tracking, eye tracking, totem tracking, or gesture/pose
tracking, wherein the one or more of the interest rule or
the suggestion rule are based on the sensor data and the
virtual environment data; and

updating a representation of the virtual assistant in the

virtual environment in real-time responsive to the one
or more of the interest rule or the suggestion rule.

18. The computerized method of claim 16, wherein the
user is associated with a plurality of missions that the virtual
assistant is configured to assist with.

19. The computerized method of claim 18, wherein the
plurality of missions are assigned to one or more virtual
assistants based on priorities of the missions.

20. The computerized method of claim 16, wherein the
virtual environment includes a second virtual assistant
executing second logic configured to manage movements
and interactions of the second virtual assistant.
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